Preparation and in vitro characterization of retinoic acid-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) micelles

In order to achieve the controlled release of all-trans-retinoic acid (ATRA), poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) copolymer with average molecular weight of 5.34 kDa was synthesized. The nanosized micelles were prepared from copolymer by nano-precipitation m...

Full description

Saved in:
Bibliographic Details
Main Authors: Ebrahim Shakiba (Author), Saeedeh Khazaei (Author), Marziyeh Hajialyani (Author), Bandar Astinchap (Author), Ali Fattahi (Author)
Format: Book
Published: Wolters Kluwer Medknow Publications, 2017-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to achieve the controlled release of all-trans-retinoic acid (ATRA), poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) copolymer with average molecular weight of 5.34 kDa was synthesized. The nanosized micelles were prepared from copolymer by nano-precipitation method. Critical association concentration (CAC) of micelles was measured by fluorimetry and results indicated low CAC value of micelles (1.9 × 10-3 g/L). ATRA was encapsulated in the core of micelles using different ratios of drug to copolymer. In the case of 10% drug to polymer ratio, more than 80% of the drug was released within 3 days, whereas for ratio of 2% more than 90% of the drug was released within 3 h. The cytotoxic study performed by MTT assay showed that H1299 survival percent decreased significantly (P ≤ 0.05) after exposure to drug-loaded micelles, while no proliferation inhibition effect was observed by either free ATRA or blank PCL-PEG-PCL micelles.
Item Description:1735-5362
1735-9414
10.4103/1735-5362.217427