Vascular Disruptive Hydrogel Platform for Enhanced Chemotherapy and Anti-Angiogenesis through Alleviation of Immune Surveillance

Patients undergoing immunotherapy always exhibit a low-response rate due to tumor heterogeneity and immune surveillance in the tumor. Angiogenesis plays an important role in affecting the status of tumor-infiltrated lymphocytes by inducing hypoxia and acidosis microenvironment, suggesting its synerg...

Full description

Saved in:
Bibliographic Details
Main Authors: Fasheng Li (Author), Xinmei Shao (Author), Dehui Liu (Author), Xiaogang Jiao (Author), Xinqi Yang (Author), Wencai Yang (Author), Xiaoyan Liu (Author)
Format: Book
Published: MDPI AG, 2022-08-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Patients undergoing immunotherapy always exhibit a low-response rate due to tumor heterogeneity and immune surveillance in the tumor. Angiogenesis plays an important role in affecting the status of tumor-infiltrated lymphocytes by inducing hypoxia and acidosis microenvironment, suggesting its synergistic potential in immunotherapy. However, the antitumor efficacy of singular anti-angiogenesis therapy often suffers from failure in the clinic due to the compensatory pro-angiogenesis signaling pathway. In this work, classic injectable thermosensitive PLGA-PEG-PLGA copolymer was used to construct a platform to co-deliver CA4P (vascular disruptive agent) and EPI for inducing immunogenic cell death of cancer cells by targeting the tumor immune microenvironment. Investigation of 4T1 tumor-bearing mouse models suggests that local administration of injectable V+E@Gel could significantly inhibit the proliferation of cancer cells and prolong the survival rate of 4T1 tumor-bearing mouse models. Histological analysis further indicates that V+E@Gel could effectively inhibit tumor angiogenesis and metastasis by down-regulating the expression of CD34, CD31, MTA1 and TGF-β. Moreover, due to the sustained release kinetics of V+E@Gel, its local administration relieves the immune surveillance in tumor tissues and thus induces a robust and long-lasting specific antitumor immune response. Overall, this work provides a new treatment strategy through the mediation of the tumor immune microenvironment by vascular disruption to fulfill enhanced chemotherapy and immunotherapy.
Item Description:10.3390/pharmaceutics14091809
1999-4923