A regionally tailored epidemiological forecast and monitoring program to guide a healthcare system in the COVID-19 pandemic

Background: During the COVID-19 pandemic, analytics and predictive models built on regional data provided timely, accurate monitoring of epidemiological behavior, informing critical planning and decision-making for health system leaders. At Atrium Health, a large, integrated healthcare system in the...

Full description

Saved in:
Bibliographic Details
Main Authors: Philip J. Turk (Author), William E. Anderson (Author), Ryan J. Burns (Author), Shih-Hsiung Chou (Author), Thomas E. Dobbs (Author), James T. Kearns (Author), Seth T. Lirette (Author), Maggie SJ McCarter (Author), Hieu M. Nguyen (Author), Catherine L. Passaretti (Author), Geoffrey A. Rose (Author), Casey L. Stephens (Author), Jing Zhao (Author), Andrew D. McWilliams (Author)
Format: Book
Published: Elsevier, 2024-06-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_2c9cab3b814c40a190ac73875cb7cd6f
042 |a dc 
100 1 0 |a Philip J. Turk  |e author 
700 1 0 |a William E. Anderson  |e author 
700 1 0 |a Ryan J. Burns  |e author 
700 1 0 |a Shih-Hsiung Chou  |e author 
700 1 0 |a Thomas E. Dobbs  |e author 
700 1 0 |a James T. Kearns  |e author 
700 1 0 |a Seth T. Lirette  |e author 
700 1 0 |a Maggie SJ McCarter  |e author 
700 1 0 |a Hieu M. Nguyen  |e author 
700 1 0 |a Catherine L. Passaretti  |e author 
700 1 0 |a Geoffrey A. Rose  |e author 
700 1 0 |a Casey L. Stephens  |e author 
700 1 0 |a Jing Zhao  |e author 
700 1 0 |a Andrew D. McWilliams  |e author 
245 0 0 |a A regionally tailored epidemiological forecast and monitoring program to guide a healthcare system in the COVID-19 pandemic 
260 |b Elsevier,   |c 2024-06-01T00:00:00Z. 
500 |a 1876-0341 
500 |a 10.1016/j.jiph.2024.04.014 
520 |a Background: During the COVID-19 pandemic, analytics and predictive models built on regional data provided timely, accurate monitoring of epidemiological behavior, informing critical planning and decision-making for health system leaders. At Atrium Health, a large, integrated healthcare system in the southeastern United States, a team of statisticians and physicians created a comprehensive forecast and monitoring program that leveraged an array of statistical methods. Methods: The program utilized the following methodological approaches: (i) exploratory graphics, including time plots of epidemiological metrics with smoothers; (ii) infection prevalence forecasting using a Bayesian epidemiological model with time-varying infection rate; (iii) doubling and halving times computed using changepoints in local linear trend; (iv) death monitoring using combination forecasting with an ensemble of models; (v) effective reproduction number estimation with a Bayesian approach; (vi) COVID-19 patients hospital census monitored via time series models; and (vii) quantified forecast performance. Results: A consolidated forecast and monitoring report was produced weekly and proved to be an effective, vital source of information and guidance as the healthcare system navigated the inherent uncertainty of the pandemic. Forecasts provided accurate and precise information that informed critical decisions on resource planning, bed capacity and staffing management, and infection prevention strategies. Conclusions: In this paper, we have presented the framework used in our epidemiological forecast and monitoring program at Atrium Health, as well as provided recommendations for implementation by other healthcare systems and institutions to facilitate use in future pandemics. 
546 |a EN 
690 |a COVID-19 pandemic 
690 |a Public health surveillance 
690 |a Hospital resources 
690 |a Forecasting and modeling 
690 |a Infection prevalence 
690 |a Effective reproduction number 
690 |a Infectious and parasitic diseases 
690 |a RC109-216 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n Journal of Infection and Public Health, Vol 17, Iss 6, Pp 1125-1133 (2024) 
787 0 |n http://www.sciencedirect.com/science/article/pii/S1876034124001278 
787 0 |n https://doaj.org/toc/1876-0341 
856 4 1 |u https://doaj.org/article/2c9cab3b814c40a190ac73875cb7cd6f  |z Connect to this object online.