Molecular Dynamics Simulations of Voltage Gated Cation Channels: Insights on Voltage-Sensor Domain Function and Modulation

Since their discovery in the 1950s, the structure and function of voltage gated cation channels (VGCC) has been largely understood thanks to results stemming from electrophysiology, pharmacology, spectroscopy and structural biology. Over the past decade, computational methods such as molecular dynam...

Full description

Saved in:
Bibliographic Details
Main Authors: Lucie eDelemotte (Author), Michael L. Klein (Author), Mounir eTAREK (Author)
Format: Book
Published: Frontiers Media S.A., 2012-05-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_2dbbbab2f57d4cb8abdd40cdf3196cb1
042 |a dc 
100 1 0 |a Lucie eDelemotte  |e author 
700 1 0 |a Lucie eDelemotte  |e author 
700 1 0 |a Michael L. Klein  |e author 
700 1 0 |a Mounir eTAREK  |e author 
245 0 0 |a Molecular Dynamics Simulations of Voltage Gated Cation Channels: Insights on Voltage-Sensor Domain Function and Modulation 
260 |b Frontiers Media S.A.,   |c 2012-05-01T00:00:00Z. 
500 |a 1663-9812 
500 |a 10.3389/fphar.2012.00097 
520 |a Since their discovery in the 1950s, the structure and function of voltage gated cation channels (VGCC) has been largely understood thanks to results stemming from electrophysiology, pharmacology, spectroscopy and structural biology. Over the past decade, computational methods such as molecular dynamics (MD) simulations have also contributed, providing molecular level information that can be tested against experimental results, thereby allowing the validation of the models and protocols. Importantly, MD can shed light on elements of VGCC function that cannot be easily accessed through classical experiments. Here, we review the results of recent MD simulations addressing key questions that pertain to the function and modulation of the VGCC's voltage sensor domain (VSD) highlighting: 1) the movement of the S4-helix basic residues during channel activation, articulating how the electrical driving force acts upon them; 2) the nature of the VSD intermediate states on transitioning between open and closed states of the VGCC; and 3) the molecular level effects on the VSD arising from mutations of specific S4 positively charged residues involved in certain genetic diseases. 
546 |a EN 
690 |a Kv1.2 
690 |a Gating charges 
690 |a VSD intermediate states 
690 |a Molecular models 
690 |a Chanellopathies 
690 |a mutations 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Frontiers in Pharmacology, Vol 3 (2012) 
787 0 |n http://journal.frontiersin.org/Journal/10.3389/fphar.2012.00097/full 
787 0 |n https://doaj.org/toc/1663-9812 
856 4 1 |u https://doaj.org/article/2dbbbab2f57d4cb8abdd40cdf3196cb1  |z Connect to this object online.