An in vitro study on the inhibition and ultrastructural alterations of Candida albicans biofilm by zinc oxide nanowires in a PMMA matrix
Objectives: The purpose of this study was (i) to investigate whether nanocomposite poly(methyl-methacrylate)-zinc oxide nanowires (PMMA-ZnO-NWs) have C. albicans antibiofilm activity; (ii) to evaluate the interaction between components of the nanocomposites based on PMMA-ZnO-NWs by Raman spectroscop...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Book |
Published: |
Elsevier,
2021-12-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Objectives: The purpose of this study was (i) to investigate whether nanocomposite poly(methyl-methacrylate)-zinc oxide nanowires (PMMA-ZnO-NWs) have C. albicans antibiofilm activity; (ii) to evaluate the interaction between components of the nanocomposites based on PMMA-ZnO-NWs by Raman spectroscopy; and (iii) to assess ultrastructural alterations. Design: Sixty-eight rectangles (17 PMMA (control) and 51 PMMA-ZnO-NWs (250, 500, 1000 ppm ZnO nanowires) were fabricated. C. albicans ATCC 10231 and a C. albicans clinical strain were tested. Adherence, biofilm formation and ultrastructural alterations were assessed by transmission electron microscopy. Raman mapping images and spectra were analyzed using main component analysis. Results: Nanocomposite PMMA-ZnO-NWs inhibited the formation of C. albicans biofilms 94% at 1000 ppm and 80% at 500 ppm against both C. albicans strains. PMMA-ZnO-NWs induced ultrastructural alterations, including cell wall damage and disorganization of the cytoplasmic membrane, resulting in cell lysis. Raman spectroscopy showed new vibrational modes (300-365-485-600 cm−1) for PMMA and ZnO-NW interactions. Conclusions: PMMA-ZnO-NWs inhibited C. albicans dose-dependent biofilm formation and led to changes in the structures and cell membrane. Raman spectroscopy showed chemical interactions between ZnO-NWs and PMMA, as suggested by the appearance of new bands at 301 and 485 cm−1. |
---|---|
Item Description: | 1013-9052 10.1016/j.sdentj.2021.08.006 |