Effects of Ranolazine, a Novel Anti-anginal Drug, on Ion Currents and Membrane Potential in Pituitary Tumor GH3 Cells and NG108-15 Neuronal Cells

Abstract.: Ranolazine, a piperazine derivative, is currently approved for the treatment of chronic angina. However, its ionic mechanisms in other types of cells remain unclear, although it is thought to be a selective blocker of late Na+ current. This study was conducted to evaluate the possible eff...

Full description

Saved in:
Bibliographic Details
Main Authors: Bing-Shuo Chen (Author), Yi-Ching Lo (Author), Hsung Peng (Author), Tai-I Hsu (Author), Sheng-Nan Wu (Author)
Format: Book
Published: Elsevier, 2009-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_307eb70464a34d46b45b56749f0c24b3
042 |a dc 
100 1 0 |a Bing-Shuo Chen  |e author 
700 1 0 |a Yi-Ching Lo  |e author 
700 1 0 |a Hsung Peng  |e author 
700 1 0 |a Tai-I Hsu  |e author 
700 1 0 |a Sheng-Nan Wu  |e author 
245 0 0 |a Effects of Ranolazine, a Novel Anti-anginal Drug, on Ion Currents and Membrane Potential in Pituitary Tumor GH3 Cells and NG108-15 Neuronal Cells 
260 |b Elsevier,   |c 2009-01-01T00:00:00Z. 
500 |a 1347-8613 
500 |a 10.1254/jphs.09018FP 
520 |a Abstract.: Ranolazine, a piperazine derivative, is currently approved for the treatment of chronic angina. However, its ionic mechanisms in other types of cells remain unclear, although it is thought to be a selective blocker of late Na+ current. This study was conducted to evaluate the possible effects of ranolazine on Na+ current (INa), L-type Ca2+ current (ICa,L), inwardly rectifying K+ current (IK(IR)), delayed-rectifier K+ current (IK(DR)), and Ca2+-activated K+ current (IK(Ca)) in pituitary tumor (GH3) cells. Ranolazine depressed the transient and late components of INa with different potencies. This drug exerted an inhibitory effect on IK(IR) with an IC50 value of 0.92 μM, while it slightly inhibited IK(DR) and IK(Ca). It shifted the steady-state activation curve of IK(IR) to more positive potentials with no change in the gating charge of the channel. Ranolazine (30 μM) also reduced the activity of large-conductance Ca2+-activated K+ channels in HEK293T cells expressing α-hSlo. Under current-clamp conditions, low concentrations (e.g., 1 μM) of ranolazine increased the firing of action potentials, while at high concentrations (≥10 μM), it diminished the firing discharge. The exposure to ranolazine also suppressed INa and IK(IR) effectively in NG108-15 neuronal cells. Our study provides evidence that ranolazine could block multiple ion currents such as INa and IK(IR) and suggests that these actions may contribute to some of the functional activities of neurons and endocrine or neuroendocrine cells In vivo. Keywords:: ranolazine, Na+ current, inwardly rectifying K+ current, GH3 cell, NG108-15 cell 
546 |a EN 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Journal of Pharmacological Sciences, Vol 110, Iss 3, Pp 295-305 (2009) 
787 0 |n http://www.sciencedirect.com/science/article/pii/S1347861319311788 
787 0 |n https://doaj.org/toc/1347-8613 
856 4 1 |u https://doaj.org/article/307eb70464a34d46b45b56749f0c24b3  |z Connect to this object online.