Phase-Locked Time-Shift Data Augmentation Method for SSVEP Brain-Computer Interfaces

Steady-state visual evoked potential (SSVEP) based brain-computer interfaces (BCIs) have achieved an information transfer rate (ITR) of over 300 bits/min, but abundant training data is required. The performance of SSVEP algorithms deteriorates greatly under limited data, and the existing time-shift...

Full description

Saved in:
Bibliographic Details
Main Authors: Ximing Mai (Author), Jikun Ai (Author), Yuxuan Wei (Author), Xiangyang Zhu (Author), Jianjun Meng (Author)
Format: Book
Published: IEEE, 2023-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_30eef3d705f94d2cb799e4dfdfa4bd05
042 |a dc 
100 1 0 |a Ximing Mai  |e author 
700 1 0 |a Jikun Ai  |e author 
700 1 0 |a Yuxuan Wei  |e author 
700 1 0 |a Xiangyang Zhu  |e author 
700 1 0 |a Jianjun Meng  |e author 
245 0 0 |a Phase-Locked Time-Shift Data Augmentation Method for SSVEP Brain-Computer Interfaces 
260 |b IEEE,   |c 2023-01-01T00:00:00Z. 
500 |a 1558-0210 
500 |a 10.1109/TNSRE.2023.3323351 
520 |a Steady-state visual evoked potential (SSVEP) based brain-computer interfaces (BCIs) have achieved an information transfer rate (ITR) of over 300 bits/min, but abundant training data is required. The performance of SSVEP algorithms deteriorates greatly under limited data, and the existing time-shift data augmentation method fails to improve it because the phase-locked requirement between training samples is violated. To address this issue, this study proposes a novel augmentation method, namely phase-locked time-shift (PLTS), for SSVEP-BCI. The similarity between epochs at different time moments was evaluated, and a unique time-shift step was calculated for each class to augment additional data epochs in each trial. The results showed that the PLTS significantly improved the classification performance of SSVEP algorithms on the BETA SSVEP datasets. Moreover, under the condition of one calibration block, by slightly prolonging the calibration duration (from 48 s to 51.5 s), the ITR increased from <inline-formula> <tex-math notation="LaTeX">${40.88}\pm {4.54}$ </tex-math></inline-formula> bits/min to <inline-formula> <tex-math notation="LaTeX">${122.61}\pm {7.05}$ </tex-math></inline-formula> bits/min with the PLTS. This study provides a new perspective on augmenting data epochs for training-based SSVEP-BCI, promotes the classification accuracy and ITR under limited training data, and thus facilitates the real-life applications of SSVEP-based brain spellers. 
546 |a EN 
690 |a Brain-computer interfaces (BCIs) 
690 |a data augmentation 
690 |a phase-locked time-shift (PLTS) 
690 |a steady-state visual evoked potential (SSVEP) 
690 |a Medical technology 
690 |a R855-855.5 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 31, Pp 4096-4105 (2023) 
787 0 |n https://ieeexplore.ieee.org/document/10275122/ 
787 0 |n https://doaj.org/toc/1558-0210 
856 4 1 |u https://doaj.org/article/30eef3d705f94d2cb799e4dfdfa4bd05  |z Connect to this object online.