Daptomycin Population Pharmacokinetics in Patients Affected by Severe Gram-Positive Infections: An Update

Daptomycin pharmacokinetics may not depend on renal function only and it significantly differs between healthy volunteers and severely ill patients. Herein, we propose a population pharmacokinetics model based on 424 plasma daptomycin concentrations collected from 156 patients affected by severe Gra...

Full description

Saved in:
Bibliographic Details
Main Authors: Giuseppe Balice (Author), Claudio Passino (Author), Maria Grazia Bongiorni (Author), Luca Segreti (Author), Alessandro Russo (Author), Marianna Lastella (Author), Giacomo Luci (Author), Marco Falcone (Author), Antonello Di Paolo (Author)
Format: Book
Published: MDPI AG, 2022-07-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Daptomycin pharmacokinetics may not depend on renal function only and it significantly differs between healthy volunteers and severely ill patients. Herein, we propose a population pharmacokinetics model based on 424 plasma daptomycin concentrations collected from 156 patients affected by severe Gram-positive infections during a routine therapeutic drug monitoring protocol. Model building and validation were performed using NONMEM 7.2 (ICON plc), Xpose4 and Perl-speaks-to-NONMEM. The final pop-PK model was a one-compartment first-order elimination model, with a 2.7% IIV for drug clearance (Cl), influence of creatinine clearance on drug clearance and of sex on distribution volume. After model validation, we simulated 10,000 patients with the Monte-Carlo method to predict the efficacy and tolerability of different daptomycin daily dosages. For the most common 6 mg/kg daily dose, the simulated probability of overcoming the toxic minimum concentration (24.3 mg/L) was 14.8% and the efficacy (expressed as a cumulative fraction of response) against methicillin-resistant <i>S. aureus</i>, <i>S. pneumoniae</i> and <i>E. faecium</i> was 95.77%, 99.99% and 68%, respectively. According to the model-informed precision dosing paradigm, pharmacokinetic models such as ours could help clinicians to perform patient-tailored antimicrobial dosing and maximize the odds of therapy success without neglecting toxicity risks.
Item Description:10.3390/antibiotics11070914
2079-6382