Anti-Interleukin-22-Neutralizing Antibody Attenuates Angiotensin II-Induced Cardiac Hypertrophy in Mice

Background. Interleukin- (IL-) 22 is considered a proinflammatory cytokine. Recent evidence has demonstrated that it plays a role in cardiovascular diseases. In the recent study, we investigate whether IL-22 is involved in cardiac hypertrophy. Methods. Angiotensin II was used to build hypertrophy mo...

Full description

Saved in:
Bibliographic Details
Main Authors: Jing Ye (Author), Ling Liu (Author), Qingwei Ji (Author), Ying Huang (Author), Ying Shi (Author), Lei Shi (Author), Jianfang Liu (Author), Menglong Wang (Author), Yao Xu (Author), Huimin Jiang (Author), Zhen Wang (Author), Yingzhong Lin (Author), Jun Wan (Author)
Format: Book
Published: Hindawi Limited, 2017-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background. Interleukin- (IL-) 22 is considered a proinflammatory cytokine. Recent evidence has demonstrated that it plays a role in cardiovascular diseases. In the recent study, we investigate whether IL-22 is involved in cardiac hypertrophy. Methods. Angiotensin II was used to build hypertrophy model and the IL-22 and IL-22 receptor 1 (IL-22R1) levels in heart tissue were measured. In addition, angiotensin II-treated mice received an injection of anti-IL-22-neutralizing antibody (nAb) to investigate the effects of IL-22 nAb on myocardial hypertrophy, cardiac function, and cardiac fibrosis; the activation of the signaling pathway and the prohypertrophic inflammatory cytokine mRNA levels was detected. Furthermore, the effect of IL-22 nAb on angiotensin II-induced hypertrophy in vitro was also determined. Results. IL-22 and IL-22R1 levels were significantly increased after angiotensin II infusion. Anti-IL-22 nAb significantly alleviated the severity of hypertrophy, prevented systolic and diastolic abnormalities, reduced cardiac fibrosis, STAT3 and ERK phosphorylation, and downregulated the mRNA expression of IL-17, IL-6, IL-1β, IFN-γ, and TNF-α. In addition, IL-22 nAb attenuated angiotensin II-induced hypertrophy in H9C2 cells. Conclusion. Our data demonstrated that neutralization of IL-22 alleviated angiotensin II-induced cardiac hypertrophy. The downregulation of IL-22 may be a novel therapeutic strategy to prevent cardiac hypertrophy.
Item Description:0962-9351
1466-1861
10.1155/2017/5635929