Development and Validation of an HPLC-UV Method for the Dissolution Studies of 3D-Printed Paracetamol Formulations in Milk-Containing Simulated Gastrointestinal Media

Herein, a simple and rapid HPLC method for the determination of paracetamol milk-containing biorelevant media is proposed. The separation of the analyte from the milk-containing biorelevant media was accomplished isocratically using a mobile phase containing 25 mM phosphate buffer (pH = 3.0) and met...

Full description

Saved in:
Bibliographic Details
Main Authors: Natalia Manousi (Author), Christina Karavasili (Author), Dimitrios G. Fatouros (Author), Paraskevas D. Tzanavaras (Author), Constantinos K. Zacharis (Author)
Format: Book
Published: MDPI AG, 2022-06-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Herein, a simple and rapid HPLC method for the determination of paracetamol milk-containing biorelevant media is proposed. The separation of the analyte from the milk-containing biorelevant media was accomplished isocratically using a mobile phase containing 25 mM phosphate buffer (pH = 3.0) and methanol, 80:20, v/v at a flow rate of 1 mL min<sup>−1</sup>. Following a protein precipitation-based sample clean-up, a thorough investigation of the effect of the precipitation reagent (methanol, acetonitrile, 10% v/v trifluoroacetic acid solution) on the analyte recovery was performed. The matrix effect was assessed in each biorelevant medium by comparing the slopes of the calibration curves of aqueous and matrix-matched calibration curves. The method was comprehensively validated using the accuracy profiles. The <i>β</i>-expectation tolerance intervals did not exceed the acceptance criteria of ±15%, meaning that 95% of future results will be included in the defined bias limits. The relative bias ranged between −4.5 and +3.9% for all analytes, while the RSD values for repeatability and intermediate precision were less than 2.7% and 3.0%, respectively. The achieved limit of detection (LOD) was 0.02 μg mL<sup>−1</sup> and the lower limits of quantitation (LLOQ) were established as 10 μg mL<sup>−1</sup>, which corresponded to 2% of the highest expected concentration of paracetamol. The proposed scheme was utilized for the determination of paracetamol in dissolution studies of its 3D-printed formulation in milk-containing biorelevant media.
Item Description:10.3390/ph15060755
1424-8247