New geometric methods for prove existence three-dimensional linear [97, 3, 87] 11 and [143, 3, 131] 13 codes
<strong> </strong> In this paper we applied new geometric methods for prove existence three dimensional linear [97,3 ,87]<sub>11</sub> and [143,3,131]<sub>13 </sub>codes theorems [(1.4.4), (1.5.5)].
Saved in:
Main Authors: | , |
---|---|
Format: | Book |
Published: |
College of Education for Pure Sciences,
2019-03-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000 am a22000003u 4500 | ||
---|---|---|---|
001 | doaj_33d09f14a8b64a93b2b3cb945c5e8648 | ||
042 | |a dc | ||
100 | 1 | 0 | |a Nada Yahya |e author |
700 | 1 | 0 | |a Mustafa Salim |e author |
245 | 0 | 0 | |a New geometric methods for prove existence three-dimensional linear [97, 3, 87] 11 and [143, 3, 131] 13 codes |
260 | |b College of Education for Pure Sciences, |c 2019-03-01T00:00:00Z. | ||
500 | |a 1812-125X | ||
500 | |a 2664-2530 | ||
500 | |a 10.33899/edusj.2019.161057 | ||
520 | |a <strong> </strong> In this paper we applied new geometric methods for prove existence three dimensional linear [97,3 ,87]<sub>11</sub> and [143,3,131]<sub>13 </sub>codes theorems [(1.4.4), (1.5.5)]. | ||
546 | |a AR | ||
546 | |a EN | ||
690 | |a algebraic geometry, linear [n, k ,d]q codes, three- dimensional codes and the griesmer bound, (n, r)_arc in projective geometries | ||
690 | |a optimal linear codes | ||
690 | |a Education | ||
690 | |a L | ||
690 | |a Science (General) | ||
690 | |a Q1-390 | ||
655 | 7 | |a article |2 local | |
786 | 0 | |n مجلة التربية والعلم, Vol 28, Iss 1, Pp 312-333 (2019) | |
787 | 0 | |n https://edusj.mosuljournals.com/article_161057_158ccbb84e4b44dc44d637c9ed5a7219.pdf | |
787 | 0 | |n https://doaj.org/toc/1812-125X | |
787 | 0 | |n https://doaj.org/toc/2664-2530 | |
856 | 4 | 1 | |u https://doaj.org/article/33d09f14a8b64a93b2b3cb945c5e8648 |z Connect to this object online. |