Glutamine sustains energy metabolism and alleviates liver injury in burn sepsis by promoting the assembly of mitochondrial HSP60-HSP10 complex via SIRT4 dependent protein deacetylation

ABSTRACTBurns and burn sepsis, characterized by persistent and profound hypercatabolism, cause energy metabolism dysfunction that worsens organ injury and systemic disorders. Glutamine (Gln) is a key nutrient that remarkably replenishes energy metabolism in burn and sepsis patients, but its exact ro...

Full description

Saved in:
Bibliographic Details
Main Authors: Yongjun Yang (Author), Qian Chen (Author), Shijun Fan (Author), Yongling Lu (Author), Qianyin Huang (Author), Xin Liu (Author), Xi Peng (Author)
Format: Book
Published: Taylor & Francis Group, 2024-12-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_34c5ac099fcb4b0c88c71284c8c0958a
042 |a dc 
100 1 0 |a Yongjun Yang  |e author 
700 1 0 |a Qian Chen  |e author 
700 1 0 |a Shijun Fan  |e author 
700 1 0 |a Yongling Lu  |e author 
700 1 0 |a Qianyin Huang  |e author 
700 1 0 |a Xin Liu  |e author 
700 1 0 |a Xi Peng  |e author 
245 0 0 |a Glutamine sustains energy metabolism and alleviates liver injury in burn sepsis by promoting the assembly of mitochondrial HSP60-HSP10 complex via SIRT4 dependent protein deacetylation 
260 |b Taylor & Francis Group,   |c 2024-12-01T00:00:00Z. 
500 |a 10.1080/13510002.2024.2312320 
500 |a 1743-2928 
500 |a 1351-0002 
520 |a ABSTRACTBurns and burn sepsis, characterized by persistent and profound hypercatabolism, cause energy metabolism dysfunction that worsens organ injury and systemic disorders. Glutamine (Gln) is a key nutrient that remarkably replenishes energy metabolism in burn and sepsis patients, but its exact roles beyond substrate supply is unclear. In this study, we demonstrated that Gln alleviated liver injury by sustaining energy supply and restoring redox balance. Meanwhile, Gln also rescued the dysfunctional mitochondrial electron transport chain (ETC) complexes, improved ATP production, reduced oxidative stress, and protected hepatocytes from burn sepsis injury. Mechanistically, we revealed that Gln could activate SIRT4 by upregulating its protein synthesis and increasing the level of Nicotinamide adenine dinucleotide (NAD+), a co-enzyme that sustains the activity of SIRT4. This, in turn, reduced the acetylation of shock protein (HSP) 60 to facilitate the assembly of the HSP60-HSP10 complex, which maintains the activity of ETC complex II and III and thus sustain ATP generation and reduce reactive oxygen species release. Overall, our study uncovers a previously unknown pharmacological mechanism involving the regulation of HSP60-HSP10 assembly by which Gln recovers mitochondrial complex activity, sustains cellular energy metabolism and exerts a hepato-protective role in burn sepsis. 
546 |a EN 
690 |a Glutamine 
690 |a burn sepsis 
690 |a HSP60-HSP10 assembly 
690 |a energy metabolism 
690 |a mitochondrial electron transport chain 
690 |a reactive oxygen species 
690 |a Pathology 
690 |a RB1-214 
690 |a Biology (General) 
690 |a QH301-705.5 
655 7 |a article  |2 local 
786 0 |n Redox Report, Vol 29, Iss 1 (2024) 
787 0 |n https://www.tandfonline.com/doi/10.1080/13510002.2024.2312320 
787 0 |n https://doaj.org/toc/1351-0002 
787 0 |n https://doaj.org/toc/1743-2928 
856 4 1 |u https://doaj.org/article/34c5ac099fcb4b0c88c71284c8c0958a  |z Connect to this object online.