PRIMITIVE MATRICES AND GENERATORS OF PSEUDO RANDOM SEQUENCES OF GALOIS

In theory and practice of information cryptographic protection one of the key problems is the forming a binary pseudo-random sequences (PRS) with a maximum length with acceptable statistical characteristics. PRS generators are usually implemented by linear shift register (LSR) of maximum period with...

Full description

Saved in:
Bibliographic Details
Main Authors: A. Beletsky (Author), E. Beletsky (Author)
Format: Book
Published: Kherson State University, 2014-04-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_351c3d4c26344b51bb4fc0576357b796
042 |a dc 
100 1 0 |a A. Beletsky  |e author 
700 1 0 |a E. Beletsky  |e author 
245 0 0 |a PRIMITIVE MATRICES AND GENERATORS OF PSEUDO RANDOM SEQUENCES OF GALOIS 
260 |b Kherson State University,   |c 2014-04-01T00:00:00Z. 
500 |a 1998-6939 
500 |a 2306-1707 
520 |a In theory and practice of information cryptographic protection one of the key problems is the forming a binary pseudo-random sequences (PRS) with a maximum length with acceptable statistical characteristics. PRS generators are usually implemented by linear shift register (LSR) of maximum period with linear feedback [1]. In this paper we extend the concept of LSR, assuming that each of its rank (memory cell) can be in one of the following condition. Let's call such registers "generalized linear shift register." The research goal is to develop algorithms for constructing Galois and Fibonacci generalized matrix of n-order over the field , which uniquely determined both the structure of corresponding generalized of n-order LSR maximal period, and formed on their basis Galois PRS generators of maximum length. Thus the article presents the questions of formation the primitive generalized Fibonacci and Galois arbitrary order matrix over the prime field . The synthesis of matrices is based on the use of irreducible polynomials of degree and primitive elements of the extended field generated by polynomial. The constructing methods of Galois and Fibonacci conjugated primitive matrices are suggested. The using possibilities of such matrices in solving the problem of constructing generalized generators of Galois pseudo-random sequences are discussed. 
546 |a EN 
546 |a RU 
546 |a UK 
690 |a Galois fields 
690 |a Galois sequences generators 
690 |a irreducible polynomials 
690 |a linear shift registers 
690 |a primitive matrices 
690 |a Education 
690 |a L 
655 7 |a article  |2 local 
786 0 |n Ìнформаційні технології в освіті, Iss 18, Pp 14-29 (2014) 
787 0 |n http://ite.kspu.edu/webfm_send/754 
787 0 |n https://doaj.org/toc/1998-6939 
787 0 |n https://doaj.org/toc/2306-1707 
856 4 1 |u https://doaj.org/article/351c3d4c26344b51bb4fc0576357b796  |z Connect to this object online.