Modelo de red neuronal artificial para predecir resultados académicos en la asignatura Matemática II

Objetivo. Este artículo muestra el diseño y entrenamiento de una red neuronal artificial (RNA) para predecir resultados académicos de estudiantes de Ingeniería Civil de la Universidad Nacional Intercultural Fabiola Salazar Leguía de Bagua-Perú en la asignatura de Matemática II. Método. Se ut...

Full description

Saved in:
Bibliographic Details
Main Authors: Fernando Alain Incio-Flores (Author), Dulce Lucero Capuñay-Sanchez (Author), Ronald Omar Estela-Urbina (Author)
Format: Book
Published: Universidad Nacional, Costa Rica, 2022-12-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objetivo. Este artículo muestra el diseño y entrenamiento de una red neuronal artificial (RNA) para predecir resultados académicos de estudiantes de Ingeniería Civil de la Universidad Nacional Intercultural Fabiola Salazar Leguía de Bagua-Perú en la asignatura de Matemática II. Método. Se utilizó la metodología CRISP-DM, para recolectar los datos se emplearon encuestas, el modelo de RNA se implementó en el software Matlab utilizando el comando nnstart y dos algoritmos de aprendizaje: Scaled Conjugate Gradient (SCG) y Levenberg-Marquardt (LM), el rendimiento del modelo se evaluó mediante el error cuadrático medio y el coeficiente de correlación. Conclusiones. El algoritmo LM logró mejor efectividad en la predicción.
Item Description:1409-4258
10.15359/ree.27-1.14516