EMG-Driven Musculoskeletal Model Calibration With Wrapping Surface Personalization

Muscle forces and joint moments estimated by electromyography (EMG)-driven musculoskeletal models are sensitive to the wrapping surface geometry defining muscle-tendon lengths and moment arms. Despite this sensitivity, wrapping surface properties are typically not personalized to subject movement da...

Full description

Saved in:
Bibliographic Details
Main Authors: Di Ao (Author), Geng Li (Author), Mohammad S. Shourijeh (Author), Carolynn Patten (Author), Benjamin J. Fregly (Author)
Format: Book
Published: IEEE, 2023-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_35a95e16b8eb4ae390c69284966e00e7
042 |a dc 
100 1 0 |a Di Ao  |e author 
700 1 0 |a Geng Li  |e author 
700 1 0 |a Mohammad S. Shourijeh  |e author 
700 1 0 |a Carolynn Patten  |e author 
700 1 0 |a Benjamin J. Fregly  |e author 
245 0 0 |a EMG-Driven Musculoskeletal Model Calibration With Wrapping Surface Personalization 
260 |b IEEE,   |c 2023-01-01T00:00:00Z. 
500 |a 1558-0210 
500 |a 10.1109/TNSRE.2023.3323516 
520 |a Muscle forces and joint moments estimated by electromyography (EMG)-driven musculoskeletal models are sensitive to the wrapping surface geometry defining muscle-tendon lengths and moment arms. Despite this sensitivity, wrapping surface properties are typically not personalized to subject movement data. This study developed a novel method for personalizing OpenSim cylindrical wrapping surfaces during EMG-driven model calibration. To avoid the high computational cost of repeated OpenSim muscle analyses, the method uses two-level polynomial surrogate models. Outer-level models specify time-varying muscle-tendon lengths and moment arms as functions of joint angles, while inner-level models specify time-invariant outer-level polynomial coefficients as functions of wrapping surface parameters. To evaluate the method, we used walking data collected from two individuals post-stroke and performed four variations of EMG-driven lower extremity model calibration: 1) no calibration of scaled generic wrapping surfaces (NGA), 2) calibration of outer-level polynomial coefficients for all muscles (SGA), 3) calibration of outer-level polynomial coefficients only for muscles with wrapping surfaces (LSGA), and 4) calibration of cylindrical wrapping surface parameters for muscles with wrapping surfaces (PGA). On average compared to NGA, SGA reduced lower extremity joint moment matching errors by 31%, LSGA by 24%, and PGA by 12%, with the largest reductions occurring at the hip. Furthermore, PGA reduced peak hip joint contact force by 47% bodyweight, which was the most consistent with published in vivo measurements. The proposed method for EMG-driven model calibration with wrapping surface personalization produces physically realistic OpenSim models that reduce joint moment matching errors while improving prediction of hip joint contact force. 
546 |a EN 
690 |a EMG-driven models 
690 |a musculoskeletal modeling 
690 |a muscle wrapping surfaces 
690 |a musculoskeletal model personalization 
690 |a muscle-tendon length 
690 |a muscle moment arms 
690 |a Medical technology 
690 |a R855-855.5 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 31, Pp 4235-4244 (2023) 
787 0 |n https://ieeexplore.ieee.org/document/10285407/ 
787 0 |n https://doaj.org/toc/1558-0210 
856 4 1 |u https://doaj.org/article/35a95e16b8eb4ae390c69284966e00e7  |z Connect to this object online.