Detecting Pulp Stones with Automatic Deep Learning in Bitewing Radiographs: A Pilot Study of Artificial Intelligence

Purpose: This study aims to examine the diagnostic performance of detecting pulp stones with a deep learning model on bite-wing radiographs. Material and Methods: 2203 radiographs were scanned retrospectively. 1745 pulp stones were marked on 1269 bite-wing radiographs with the CranioCatch labeling p...

Full description

Saved in:
Bibliographic Details
Main Authors: Ali Altındağ (Author), Özer Çelik (Author), İbrahim Şevki Bayrakdar (Author), Sultan Uzun (Author)
Format: Book
Published: Ankara University, 2023-04-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose: This study aims to examine the diagnostic performance of detecting pulp stones with a deep learning model on bite-wing radiographs. Material and Methods: 2203 radiographs were scanned retrospectively. 1745 pulp stones were marked on 1269 bite-wing radiographs with the CranioCatch labeling program (CranioCatch, Eskişehir, Turkey) in patients over 16 years old after the consensus of two experts of Maxillofacial Radiologists. This dataset was divided into 3 grou as training (n = 1017 (1396 labels), validation (n = 126 (174 labels)) and test (n = 126) (175 labels) sets, respectively. The deep learning model was developed using Mask R-CNN architecture. A confusion matrix was used to evaluate the success of the model. Results: The results of precision, sensitivity, and F1 obtained using the Mask R-CNN architecture in the test dataset were found to be 0.9115, 0.8879, and 0.8995, respectively. Discussion- Conclusion: Deep learning algorithms can detect pulp stones. With this, clinicians can use software systems based on artificial intelligence as a diagnostic support system. Mask R-CNN architecture can be used for pulp stone detection with approximately 90% sensitivity. The larger data sets increase the accuracy of deep learning systems. More studies are needed to increase the success rates of deep learning models.
Item Description:2757-6744
10.52037/eads.2023.0004