Automated Sleep Stages Classification Using Convolutional Neural Network From Raw and Time-Frequency Electroencephalogram Signals: Systematic Evaluation Study
BackgroundMost existing automated sleep staging methods rely on multimodal data, and scoring a specific epoch requires not only the current epoch but also a sequence of consecutive epochs that precede and follow the epoch. ObjectiveWe proposed and tested a convolutional neural network called SleepIn...
Saved in:
Main Authors: | Shahab Haghayegh (Author), Kun Hu (Author), Katie Stone (Author), Susan Redline (Author), Eva Schernhammer (Author) |
---|---|
Format: | Bog |
Udgivet: |
JMIR Publications,
2023-02-01T00:00:00Z.
|
Fag: | |
Online adgang: | Connect to this object online. |
Tags: |
Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!
|
Lignende værker
-
SleepFCN: A Fully Convolutional Deep Learning Framework for Sleep Stage Classification Using Single-Channel Electroencephalograms
af: Narjes Goshtasbi, et al.
Udgivet: (2022) -
Classifying Routine Clinical Electroencephalograms With Multivariate Iterative Filtering and Convolutional Neural Networks
af: Vardhan Paliwal, et al.
Udgivet: (2024) -
Convolutional neural network for automated tooth segmentation on intraoral scans
af: Xiaotong Wang, et al.
Udgivet: (2024) -
Automation of classification of sleep stages and estimation of sleep efficiency using actigraphy
af: Hyejin Kim, et al.
Udgivet: (2023) -
Automated Sleep Staging via Parallel Frequency-Cut Attention
af: Zheng Chen, et al.
Udgivet: (2023)