Differentiating Induced Pluripotent Stem Cells into Renal Cells: A New Approach to Treat Kidney Diseases

Renal disease is a major issue for global public health. Despite some progress in supportive care, the mortality rates among patients with this condition remain alarmingly high. Studies in pursuit of innovative strategies to treat renal diseases, especially stimulating kidney regeneration, have been...

Full description

Saved in:
Bibliographic Details
Main Authors: Patrícia de Carvalho Ribeiro (Author), Lucas Felipe Oliveira (Author), Mario Abbud Filho (Author), Heloisa Cristina Caldas (Author)
Format: Book
Published: Hindawi Limited, 2020-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Renal disease is a major issue for global public health. Despite some progress in supportive care, the mortality rates among patients with this condition remain alarmingly high. Studies in pursuit of innovative strategies to treat renal diseases, especially stimulating kidney regeneration, have been developed. In this field, stem cell-based therapy has been a promising area. Induced pluripotent stem cell-derived renal cells (iPSC-RCs) represent an interesting source of cells for treating kidney diseases. Advances in regenerative medicine using iPSC-RCs and their application to the kidney are discussed in this review. Furthermore, the way differentiation protocols of induced pluripotent stem cells into renal cells may also be applied for the generation of kidney organoids is also described, contributing to studies in renal development, kidney diseases, and drug toxicity tests. The translation of the differentiation methodologies into animal model studies and the safety and feasibility of renal differentiated cells as a treatment for kidney injury are also highlighted. Although only few studies were published in this field, the results seem promising and support the use of iPSC-RCs as a potential therapy in the future.
Item Description:1687-966X
1687-9678
10.1155/2020/8894590