Generalized Richards model for predicting COVID-19 dynamics in Saudi Arabia based on particle swarm optimization Algorithm
COVID-19 pandemic is spreading around the world becoming thus a serious concern for health, economic and social systems worldwide. In such situation, predicting as accurately as possible the future dynamics of the virus is a challenging problem for scientists and decision-makers. In this paper, four...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Book |
Published: |
AIMS Press,
2020-12-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | COVID-19 pandemic is spreading around the world becoming thus a serious concern for health, economic and social systems worldwide. In such situation, predicting as accurately as possible the future dynamics of the virus is a challenging problem for scientists and decision-makers. In this paper, four phenomenological epidemic models as well as Suspected-Infected-Recovered (SIR) model are investigated for predicting the cumulative number of infected cases in Saudi Arabia in addition to the probable end-date of the outbreak. The prediction problem is formulated as an optimization framework and solved using a Particle Swarm Optimization (PSO) algorithm. The Generalized Richards Model (GRM) has been found to be the best one in achieving two objectives: first, fitting the collected data (covering 223 days between March 2<sup>nd</sup> and October 10, 2020) with the lowest mean absolute percentage error (MAPE = 3.2889%), the highest coefficient of determination (R<sup>2</sup> = 0.9953) and the lowest root mean squared error (RMSE = 8827); and second, predicting a probable end date found to be around the end of December 2020 with a projected number of 378,299 at the end of the outbreak. The obtained results may help the decision-makers to take suitable decisions related to the pandemic mitigation and containment and provide clear understanding of the virus dynamics in Saudi Arabia. |
---|---|
Item Description: | 10.3934/publichealth.2020064 2327-8994 |