Nitric Oxide Regulates Plant Growth, Physiology, Antioxidant Defense, and Ion Homeostasis to Confer Salt Tolerance in the Mangrove Species, <i>Kandelia obovata</i>

Facultative halophyte <i>Kandelia obovata</i> plants were exposed to mild (1.5% NaCl) and severe (3% NaCl) salt stress with or without sodium nitroprusside (SNP; 100 µM; a NO donor), hemoglobin (Hb, 100 µM; a NO scavenger), or Nω-nitro-L-arginine methyl ester (L-NAME, 100 µM; a NO syntha...

Full description

Saved in:
Bibliographic Details
Main Authors: Mirza Hasanuzzaman (Author), Masashi Inafuku (Author), Kamrun Nahar (Author), Masayuki Fujita (Author), Hirosuke Oku (Author)
Format: Book
Published: MDPI AG, 2021-04-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_3d697e7400e749ce9afd34de44656a03
042 |a dc 
100 1 0 |a Mirza Hasanuzzaman  |e author 
700 1 0 |a Masashi Inafuku  |e author 
700 1 0 |a Kamrun Nahar  |e author 
700 1 0 |a Masayuki Fujita  |e author 
700 1 0 |a Hirosuke Oku  |e author 
245 0 0 |a Nitric Oxide Regulates Plant Growth, Physiology, Antioxidant Defense, and Ion Homeostasis to Confer Salt Tolerance in the Mangrove Species, <i>Kandelia obovata</i> 
260 |b MDPI AG,   |c 2021-04-01T00:00:00Z. 
500 |a 10.3390/antiox10040611 
500 |a 2076-3921 
520 |a Facultative halophyte <i>Kandelia obovata</i> plants were exposed to mild (1.5% NaCl) and severe (3% NaCl) salt stress with or without sodium nitroprusside (SNP; 100 µM; a NO donor), hemoglobin (Hb, 100 µM; a NO scavenger), or Nω-nitro-L-arginine methyl ester (L-NAME, 100 µM; a NO synthase inhibitor). The plants were significantly affected by severe salt stress. They showed decreases in seedling growth, stomatal conductance, intercellular CO<sub>2</sub> concentration, SPAD value, photosynthetic rate, transpiration rate, water use efficiency, and disrupted antioxidant defense systems, overproduction of reactive oxygen species, and visible oxidative damage. Salt stress also induced ion toxicity and disrupted nutrient homeostasis, as indicated by elevated leaf and root Na<sup>+</sup> contents, decreased K<sup>+</sup> contents, lower K<sup>+</sup>/Na<sup>+</sup> ratios, and decreased Ca contents while increasing osmolyte (proline) levels. Treatment of salt-stressed plants with SNP increased endogenous NO levels, reduced ion toxicity, and improved nutrient homeostasis while further increasing Pro levels to maintain osmotic balance. SNP treatment also improved gas exchange parameters and enhanced antioxidant enzymes' activities (catalase, ascorbate peroxidase, monodehydroascorbate reductase, and dehydroascorbate reductase). Treatment with Hb and <span style="font-variant: small-caps;">l</span>-NAME reversed these beneficial SNP effects and exacerbated salt damage, confirming that SNP promoted stress recovery and improved plant growth under salt stress. 
546 |a EN 
690 |a halophytes 
690 |a antioxidants 
690 |a reactive oxygen species 
690 |a soil salinity 
690 |a signaling molecules 
690 |a abiotic stress 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Antioxidants, Vol 10, Iss 4, p 611 (2021) 
787 0 |n https://www.mdpi.com/2076-3921/10/4/611 
787 0 |n https://doaj.org/toc/2076-3921 
856 4 1 |u https://doaj.org/article/3d697e7400e749ce9afd34de44656a03  |z Connect to this object online.