Broad-Spectrum Activity of Small Molecules Acting against Influenza a Virus: Biological and Computational Studies
Influenza still represents a problematic disease, involving millions of people every year and causing hundreds of thousands of deaths. Only a few drugs are clinically available. The search for an effective weapon is still ongoing. In this scenario, we recently identified new drug-like compounds with...
Saved in:
Main Authors: | , |
---|---|
Format: | Book |
Published: |
MDPI AG,
2022-02-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Influenza still represents a problematic disease, involving millions of people every year and causing hundreds of thousands of deaths. Only a few drugs are clinically available. The search for an effective weapon is still ongoing. In this scenario, we recently identified new drug-like compounds with antiviral activity toward two A/H1N1 Influenza virus strains, which were demonstrated to interfere with the processes mediated by hemagglutinin (HA). In the present work, the compound's ability to act against the A/H3N2 viral strain has been evaluated in hemagglutination inhibition (HI) assays. Two of the five tested compounds were also active toward the A/H3N2 Influenza virus. To validate the scaffold activity, analogue compounds of two broad-spectrum molecules were selected and purchased for HI testing on both A/H1N1 and A/H3N2 Influenza viruses. Forty-three compounds were tested, and four proved to be active toward all three viral strains. A computational study has been carried out to depict the HA binding process of the most interesting compounds. |
---|---|
Item Description: | 10.3390/ph15030301 1424-8247 |