Multi-Objective artificial bee colony optimized hybrid deep belief network and XGBoost algorithm for heart disease prediction
The global rise in heart disease necessitates precise prediction tools to assess individual risk levels. This paper introduces a novel Multi-Objective Artificial Bee Colony Optimized Hybrid Deep Belief Network and XGBoost (HDBN-XG) algorithm, enhancing coronary heart disease prediction accuracy. Key...
Na minha lista:
Main Authors: | Kanak Kalita (Author), Narayanan Ganesh (Author), Sambandam Jayalakshmi (Author), Jasgurpreet Singh Chohan (Author), Saurav Mallik (Author), Hong Qin (Author) |
---|---|
Formato: | Livro |
Publicado em: |
Frontiers Media S.A.,
2023-11-01T00:00:00Z.
|
Assuntos: | |
Acesso em linha: | Connect to this object online. |
Tags: |
Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
|
Registos relacionados
-
Identifying fatigue of climbing workers using physiological data based on the XGBoost algorithm
Por: Yonggang Xu, et al.
Publicado em: (2024) -
A New XGBoost Algorithm Based Prediction Model for Fetal Growth Restriction in Patients with Preeclampsia
Por: Haijuan Li, et al.
Publicado em: (2023) -
Impact of COVID-19 on mental health in China: analysis based on sentiment knowledge enhanced pre-training and XGBoost algorithm
Por: Ru Huang, et al.
Publicado em: (2023) -
Solving the travelling salesman problem by using artificial bee colony algorithm / Siti Hafawati Jamaluddin ... [et al.]
Por: Jamaluddin, Siti Hafawati, et al.
Publicado em: (2022) -
Monitoring of Honey Bee Colony Losses
Publicado em: (2022)