Pelargonidin-<i>3</i>-<i>O</i>-Glucoside Encapsulated Pectin-Chitosan-Nanoliposomes Recovers Palmitic Acid-Induced Hepatocytes Injury
Pelargonidin-<i>3</i>-<i>O</i>-glucoside (Pg) is a well-known anthocyanin derivative possessing potential biological activity. Nonetheless, the bioactivity of Pg is limited due to instability in the physiological environment. Functionalized nanoliposomes using chitosan and/or...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Book |
Published: |
MDPI AG,
2022-03-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pelargonidin-<i>3</i>-<i>O</i>-glucoside (Pg) is a well-known anthocyanin derivative possessing potential biological activity. Nonetheless, the bioactivity of Pg is limited due to instability in the physiological environment. Functionalized nanoliposomes using chitosan and/or pectin coating is an excellent carrier system for nanoencapsulation of food bioactive compounds such as Pg. Therefore, this study aimed to investigate the protective effect of Pg-loaded pectin-chitosan coated nanoliposomes against palmitic acid (PA)-induced hepatocytes injury in L02 cells. Firstly, Pg-loaded pectin-chitosan coated nanoliposomes were characterized using the DLS, HPLC, TEM, and cellular uptake study in L02 cells. Thereafter, we assayed the protective effect against PA-induced lipotoxicity, ROS and O<sub>2</sub><sup>•−</sup> generation, mitochondrial dysfunction (MMP), and GSH depletion. Results showed that Pg-loaded nanoliposomes significantly reduced the PA-induced L02 cells toxicity via suppressing ROS production, O<sub>2</sub><sup>•−</sup> generation, MMP collapse, and GSH reduction, whereas the free-Pg samples were not effective. On the contrary, the chitosan and/or pectin coated nanoliposomes showed higher results compared to coating-free nanoliposomes. Altogether, the results of our study ensured that Pg-loaded pectin-chitosan coated nanoliposomes was capable of reducing PA-induced hepatocytes injury. Thus, pectin-chitosan coated nanoliposomes can be useful for hepatocellular delivery of hydrophilic compounds with greater biological activity. |
---|---|
Item Description: | 10.3390/antiox11040623 2076-3921 |