(-)-Pentazocine induces visceral chemical antinociception, but not thermal, mechanical, or somatic chemical antinociception, in μ-opioid receptor knockout mice

<p>Abstract</p> <p>Background</p> <p>(-)-Pentazocine has been hypothesized to induce analgesia via the κ-opioid (KOP) receptor, although the involvement of other opioid receptor subtypes in the effects of pentazocine remains unknown. In this study, we investigated the r...

Full description

Saved in:
Bibliographic Details
Main Authors: Satoh Masamichi (Author), Uhl George R (Author), Minami Masabumi (Author), Ide Soichiro (Author), Sora Ichiro (Author), Ikeda Kazutaka (Author)
Format: Book
Published: SAGE Publishing, 2011-04-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<p>Abstract</p> <p>Background</p> <p>(-)-Pentazocine has been hypothesized to induce analgesia via the κ-opioid (KOP) receptor, although the involvement of other opioid receptor subtypes in the effects of pentazocine remains unknown. In this study, we investigated the role of the μ-opioid (MOP) receptor in thermal, mechanical, and chemical antinociception induced by (-)-pentazocine using MOP receptor knockout (MOP-KO) mice.</p> <p>Results</p> <p>(-)-Pentazocine-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice compared with wildtype mice. The results obtained from the (-)-pentazocine-induced mechanical and somatic chemical antinociception experiments, which used the hind-paw pressure and formalin tests, were similar to the results obtained from the thermal antinociception experiments in these mice. However, (-)-pentazocine retained its ability to induce significant visceral chemical antinociception, assessed by the writhing test, in homozygous MOP-KO mice, an effect that was completely blocked by pretreatment with nor-binaltorphimine, a KOP receptor antagonist. <it>In vitro </it>binding and cyclic adenosine monophosphate assays showed that (-)-pentazocine possessed higher affinity for KOP and MOP receptors than for δ-opioid receptors.</p> <p>Conclusions</p> <p>The present study demonstrated the abolition of the thermal, mechanical, and somatic chemical antinociceptive effects of (-)-pentazocine and retention of the visceral chemical antinociceptive effects of (-)-pentazocine in MOP-KO mice. These results suggest that the MOP receptor plays a pivotal role in thermal, mechanical, and somatic chemical antinociception induced by (-)-pentazocine, whereas the KOP receptor is involved in visceral chemical antinociception induced by (-)-pentazocine.</p>
Item Description:10.1186/1744-8069-7-23
1744-8069