Statistical analysis of single-copy assays when some observations are zero

Observational and interventional studies for HIV cure research often use single-copy assays to quantify rare entities in blood or tissue samples. Statistical analysis of such measurements presents challenges due to tissue sampling variability and frequent findings of 0 copies in the sample analysed....

Full description

Saved in:
Bibliographic Details
Main Authors: Peter Bacchetti (Author), Ronald J. Bosch (Author), Eileen P. Scully (Author), Xutao Deng (Author), Michael P. Busch (Author), Steven G. Deeks (Author), Sharon R. Lewin (Author)
Format: Book
Published: Elsevier, 2019-07-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_45874b23dd1f4e00b368f4f1834cabe6
042 |a dc 
100 1 0 |a Peter Bacchetti  |e author 
700 1 0 |a Ronald J. Bosch  |e author 
700 1 0 |a Eileen P. Scully  |e author 
700 1 0 |a Xutao Deng  |e author 
700 1 0 |a Michael P. Busch  |e author 
700 1 0 |a Steven G. Deeks  |e author 
700 1 0 |a Sharon R. Lewin  |e author 
245 0 0 |a Statistical analysis of single-copy assays when some observations are zero 
260 |b Elsevier,   |c 2019-07-01T00:00:00Z. 
500 |a 2055-6640 
500 |a 10.1016/S2055-6640(20)30047-9 
520 |a Observational and interventional studies for HIV cure research often use single-copy assays to quantify rare entities in blood or tissue samples. Statistical analysis of such measurements presents challenges due to tissue sampling variability and frequent findings of 0 copies in the sample analysed. We examined four approaches to analysing such studies, reflecting different ways of handling observations of 0 copies: (A) replace observations of 0 copies with 1 copy; (B) add 1 to all observed numbers of copies; (C) treat observations of 0 copies as left-censored at 1 copy; and (D) leave the data unaltered and apply a method for count data, negative binomial regression. Because research seeks to estimate general patterns rather than individuals' values, we argue that unaltered use of 0 copies is suitable for research purposes and that altering those observations can introduce bias. When applied to a simulated study comparing preintervention to postintervention measurements within 12 participants, methods A-C showed more attenuation than method D in the estimated intervention effect, less chance of finding P < 0.05 for the intervention effect and a lower chance of including the true intervention effect within the 95% confidence interval. Application of the methods to actual data from a study comparing multiply-spliced HIV RNA among men and women estimated smaller differences by methods A-C than by method D. We recommend that negative binomial regression, which is readily available in many statistical software packages, be considered for analysis of studies of rare entities that are measured by single-copy assays. 
546 |a EN 
690 |a HIV 
690 |a latent reservoir 
690 |a rare entities 
690 |a statistical bias 
690 |a Microbiology 
690 |a QR1-502 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n Journal of Virus Eradication, Vol 5, Iss 3, Pp 167-173 (2019) 
787 0 |n http://www.sciencedirect.com/science/article/pii/S2055664020300479 
787 0 |n https://doaj.org/toc/2055-6640 
856 4 1 |u https://doaj.org/article/45874b23dd1f4e00b368f4f1834cabe6  |z Connect to this object online.