Non-esterified Fatty Acid-Induced Reactive Oxygen Species Mediated Granulosa Cells Apoptosis Is Regulated by Nrf2/p53 Signaling Pathway

Negative energy balance (NEB) during the perinatal period can affect dairy cow follicular development and reduce the fecundity. Non-esterified fatty acid (NEFA) concentration is elevated during NEB, and is known to be toxic for multiple cell types. In the ovary, NEB increased NEFA, and may influence...

Full description

Saved in:
Bibliographic Details
Main Authors: Yiru Wang (Author), Chengmin Li (Author), Julang Li (Author), Genlin Wang (Author), Lian Li (Author)
Format: Book
Published: MDPI AG, 2020-06-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_4784d2ee93d945eaac85dc5a9c07efb0
042 |a dc 
100 1 0 |a Yiru Wang  |e author 
700 1 0 |a Chengmin Li  |e author 
700 1 0 |a Julang Li  |e author 
700 1 0 |a Genlin Wang  |e author 
700 1 0 |a Lian Li  |e author 
245 0 0 |a Non-esterified Fatty Acid-Induced Reactive Oxygen Species Mediated Granulosa Cells Apoptosis Is Regulated by Nrf2/p53 Signaling Pathway 
260 |b MDPI AG,   |c 2020-06-01T00:00:00Z. 
500 |a 10.3390/antiox9060523 
500 |a 2076-3921 
520 |a Negative energy balance (NEB) during the perinatal period can affect dairy cow follicular development and reduce the fecundity. Non-esterified fatty acid (NEFA) concentration is elevated during NEB, and is known to be toxic for multiple cell types. In the ovary, NEB increased NEFA, and may influences follicular growth and development. However, the effect and mechanism of NEFA on granulosa cells (GCs) in vitro remains unknown. In this study, we found that NEFA dose-dependently induced apoptosis in primary cultured granulosa cells. Mechanistically, our data showed that NEFA significantly increased reactive oxygen species (ROS) levels, resulting in the activation of endoplasmic reticulum stress (ERS) and eventually cell apoptosis in GCs. Moreover, NEFA also increased the phosphorylation levels of ERK1/2 and p38MAPK pathways, upregulated the expression of p53 and potentially promoted its translocation to the nuclear, thus transcriptionally activated Bax, a downstream gene of this pathway. NEFA also promoted nuclear factor E2 (Nrf2) expression and its level in the nuclear. To elucidate the mechanism of NEFA action, <i>N</i>-acetyl-<span style="font-variant: small-caps;">l</span>-cysteine (NAC), a ROS scavenger was used to verify the role of ROS in NEFA induced apoptosis of GCs. NAC pretreatment reversed the NEFA-induced ERS-related protein and apoptosis-related protein levels. Meanwhile, NAC pretreatment also blocked the phosphorylation of ERK1/2 and p38 induced by NEFA, and the nucleation of Nrf2 and p53, suggesting that ROS plays a crucial role in regulating the NEFA-induced apoptosis of GCs. Together, these findings provide an improved understanding of the mechanisms underlying GCs apoptosis, which could potentially be useful for improving ovarian function. 
546 |a EN 
690 |a non-esterified fatty acid 
690 |a ROS 
690 |a <i>N</i>-acetyl-<span style="font-variant: small-caps">l</span>-cysteine 
690 |a granulosa cells 
690 |a apoptosis 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Antioxidants, Vol 9, Iss 6, p 523 (2020) 
787 0 |n https://www.mdpi.com/2076-3921/9/6/523 
787 0 |n https://doaj.org/toc/2076-3921 
856 4 1 |u https://doaj.org/article/4784d2ee93d945eaac85dc5a9c07efb0  |z Connect to this object online.