Automated cervical digitized histology whole-slide image analysis toolbox

Background: Cervical intraepithelial neoplasia (CIN) is regarded as a potential precancerous state of the uterine cervix. Timely and appropriate early treatment of CIN can help reduce cervical cancer mortality. Accurate estimation of CIN grade correlated with human papillomavirus type, which is the...

Full description

Saved in:
Bibliographic Details
Main Authors: Sudhir Sornapudi (Author), Ravitej Addanki (Author), R Joe Stanley (Author), William V Stoecker (Author), Rodney Long (Author), Rosemary Zuna (Author), Shellaine R Frazier (Author), Sameer Antani (Author)
Format: Book
Published: Elsevier, 2021-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_4bd027e031a4436dadae671ffb993d20
042 |a dc 
100 1 0 |a Sudhir Sornapudi  |e author 
700 1 0 |a Ravitej Addanki  |e author 
700 1 0 |a R Joe Stanley  |e author 
700 1 0 |a William V Stoecker  |e author 
700 1 0 |a Rodney Long  |e author 
700 1 0 |a Rosemary Zuna  |e author 
700 1 0 |a Shellaine R Frazier  |e author 
700 1 0 |a Sameer Antani  |e author 
245 0 0 |a Automated cervical digitized histology whole-slide image analysis toolbox 
260 |b Elsevier,   |c 2021-01-01T00:00:00Z. 
500 |a 2153-3539 
500 |a 2153-3539 
500 |a 10.4103/jpi.jpi_52_20 
520 |a Background: Cervical intraepithelial neoplasia (CIN) is regarded as a potential precancerous state of the uterine cervix. Timely and appropriate early treatment of CIN can help reduce cervical cancer mortality. Accurate estimation of CIN grade correlated with human papillomavirus type, which is the primary cause of the disease, helps determine the patient's risk for developing the disease. Colposcopy is used to select women for biopsy. Expert pathologists examine the biopsied cervical epithelial tissue under a microscope. The examination can take a long time and is prone to error and often results in high inter-and intra-observer variability in outcomes. Methodology: We propose a novel image analysis toolbox that can automate CIN diagnosis using whole slide image (digitized biopsies) of cervical tissue samples. The toolbox is built as a four-step deep learning model that detects the epithelium regions, segments the detected epithelial portions, analyzes local vertical segment regions, and finally classifies each epithelium block with localized attention. We propose an epithelium detection network in this study and make use of our earlier research on epithelium segmentation and CIN classification to complete the design of the end-to-end CIN diagnosis toolbox. Results: The results show that automated epithelium detection and segmentation for CIN classification yields comparable results to manually segmented epithelium CIN classification. Conclusion: This highlights the potential as a tool for automated digitized histology slide image analysis to assist expert pathologists. 
546 |a EN 
690 |a cervical cancer 
690 |a cervical intraepithelial neoplasia 
690 |a classification 
690 |a convolutional neural networks 
690 |a detection 
690 |a digital pathology 
690 |a histology 
690 |a segmentation 
690 |a whole slide image 
690 |a Computer applications to medicine. Medical informatics 
690 |a R858-859.7 
690 |a Pathology 
690 |a RB1-214 
655 7 |a article  |2 local 
786 0 |n Journal of Pathology Informatics, Vol 12, Iss 1, Pp 26-26 (2021) 
787 0 |n http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2021;volume=12;issue=1;spage=26;epage=26;aulast=Sornapudi 
787 0 |n https://doaj.org/toc/2153-3539 
787 0 |n https://doaj.org/toc/2153-3539 
856 4 1 |u https://doaj.org/article/4bd027e031a4436dadae671ffb993d20  |z Connect to this object online.