Pediatric radius torus fractures in x-rays-how computer vision could render lateral projections obsolete

It is an indisputable dogma in extremity radiography to acquire x-ray studies in at least two complementary projections, which is also true for distal radius fractures in children. However, there is cautious hope that computer vision could enable breaking with this tradition in minor injuries, clini...

Full description

Saved in:
Bibliographic Details
Main Authors: Michael Janisch (Author), Georg Apfaltrer (Author), Franko Hržić (Author), Christoph Castellani (Author), Barbara Mittl (Author), Georg Singer (Author), Franz Lindbichler (Author), Alexander Pilhatsch (Author), Erich Sorantin (Author), Sebastian Tschauner (Author)
Format: Book
Published: Frontiers Media S.A., 2022-12-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_4be848d1a93d44ba8fb71bd981e2ff03
042 |a dc 
100 1 0 |a Michael Janisch  |e author 
700 1 0 |a Georg Apfaltrer  |e author 
700 1 0 |a Franko Hržić  |e author 
700 1 0 |a Christoph Castellani  |e author 
700 1 0 |a Barbara Mittl  |e author 
700 1 0 |a Georg Singer  |e author 
700 1 0 |a Franz Lindbichler  |e author 
700 1 0 |a Alexander Pilhatsch  |e author 
700 1 0 |a Erich Sorantin  |e author 
700 1 0 |a Sebastian Tschauner  |e author 
245 0 0 |a Pediatric radius torus fractures in x-rays-how computer vision could render lateral projections obsolete 
260 |b Frontiers Media S.A.,   |c 2022-12-01T00:00:00Z. 
500 |a 2296-2360 
500 |a 10.3389/fped.2022.1005099 
520 |a It is an indisputable dogma in extremity radiography to acquire x-ray studies in at least two complementary projections, which is also true for distal radius fractures in children. However, there is cautious hope that computer vision could enable breaking with this tradition in minor injuries, clinically lacking malalignment. We trained three different state-of-the-art convolutional neural networks (CNNs) on a dataset of 2,474 images: 1,237 images were posteroanterior (PA) pediatric wrist radiographs containing isolated distal radius torus fractures, and 1,237 images were normal controls without fractures. The task was to classify images into fractured and non-fractured. In total, 200 previously unseen images (100 per class) served as test set. CNN predictions reached area under the curves (AUCs) up to 98% [95% confidence interval (CI) 96.6%-99.5%], consistently exceeding human expert ratings (mean AUC 93.5%, 95% CI 89.9%-97.2%). Following training on larger data sets CNNs might be able to effectively rule out the presence of a distal radius fracture, enabling to consider foregoing the yet inevitable lateral projection in children. Built into the radiography workflow, such an algorithm could contribute to radiation hygiene and patient comfort. 
546 |a EN 
690 |a wrist 
690 |a fracture 
690 |a radiography 
690 |a artificial intelligence 
690 |a radius 
690 |a Pediatrics 
690 |a RJ1-570 
655 7 |a article  |2 local 
786 0 |n Frontiers in Pediatrics, Vol 10 (2022) 
787 0 |n https://www.frontiersin.org/articles/10.3389/fped.2022.1005099/full 
787 0 |n https://doaj.org/toc/2296-2360 
856 4 1 |u https://doaj.org/article/4be848d1a93d44ba8fb71bd981e2ff03  |z Connect to this object online.