Adapting Action Recognition Neural Networks for Automated Infantile Spasm Detection

Infantile spasms are a severe epileptic syndrome characterized by short muscular contractions lasting from 0.5 to 2 seconds. They are often misdiagnosed due to their atypical presentation, and treatment is frequently delayed, leading to stagnation or regression in psychomotor development and signifi...

Full description

Saved in:
Bibliographic Details
Main Authors: Samuel Diop (Author), Nouha Essid (Author), Francois Jouen (Author), Jean Bergounioux (Author), Imen Trabelsi (Author)
Format: Book
Published: IEEE, 2024-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_4c7e7e5542824dba86973c1ed7d2e6d1
042 |a dc 
100 1 0 |a Samuel Diop  |e author 
700 1 0 |a Nouha Essid  |e author 
700 1 0 |a Francois Jouen  |e author 
700 1 0 |a Jean Bergounioux  |e author 
700 1 0 |a Imen Trabelsi  |e author 
245 0 0 |a Adapting Action Recognition Neural Networks for Automated Infantile Spasm Detection 
260 |b IEEE,   |c 2024-01-01T00:00:00Z. 
500 |a 1534-4320 
500 |a 1558-0210 
500 |a 10.1109/TNSRE.2024.3472088 
520 |a Infantile spasms are a severe epileptic syndrome characterized by short muscular contractions lasting from 0.5 to 2 seconds. They are often misdiagnosed due to their atypical presentation, and treatment is frequently delayed, leading to stagnation or regression in psychomotor development and significant cognitive and motor sequelae. One promising approach to addressing this issue is the use of markerless computer vision techniques. In this paper, we introduce a novel approach for recognizing infantile spasms based exclusively on video data. We utilize an expanded 3D neural network pre-trained on an extensive human action recognition dataset called Kinetics. By employing this model, we extract features from short segments of varying sizes sampled from seizure videos, which allows us to effectively capture the spatio-temporal characteristics of infantile spasms. We then apply multiple classifiers to perform binary classification on these extracted features. The best system achieved an average area under the ROC curve of <inline-formula> <tex-math notation="LaTeX">$0.813\pm 0.058$ </tex-math></inline-formula> for a 3-second window. 
546 |a EN 
690 |a Infantile spasm 
690 |a video-based monitoring 
690 |a X3D-M 
690 |a dimension reduction 
690 |a action recognition 
690 |a Medical technology 
690 |a R855-855.5 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 32, Pp 3751-3760 (2024) 
787 0 |n https://ieeexplore.ieee.org/document/10703170/ 
787 0 |n https://doaj.org/toc/1534-4320 
787 0 |n https://doaj.org/toc/1558-0210 
856 4 1 |u https://doaj.org/article/4c7e7e5542824dba86973c1ed7d2e6d1  |z Connect to this object online.