Exploration of the <i>Neisseria</i> Resistome Reveals Resistance Mechanisms in Commensals That May Be Acquired by <i>N. gonorrhoeae</i> through Horizontal Gene Transfer

Nonpathogenic <i>Neisseria</i> transfer mutations encoding antibiotic resistance to their pathogenic relative <i>Neisseria gonorrhoeae</i>. However, the resistance genotypes and subsequent phenotypes of nonpathogens within the genus have been described infrequently. Here, we...

Full description

Saved in:
Bibliographic Details
Main Authors: Michael A. Fiore (Author), Jordan C. Raisman (Author), Narayan H. Wong (Author), André O. Hudson (Author), Crista B. Wadsworth (Author)
Format: Book
Published: MDPI AG, 2020-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_4c88adeb51e540fbb0dc5df774a1e562
042 |a dc 
100 1 0 |a Michael A. Fiore  |e author 
700 1 0 |a Jordan C. Raisman  |e author 
700 1 0 |a Narayan H. Wong  |e author 
700 1 0 |a André O. Hudson  |e author 
700 1 0 |a Crista B. Wadsworth  |e author 
245 0 0 |a Exploration of the <i>Neisseria</i> Resistome Reveals Resistance Mechanisms in Commensals That May Be Acquired by <i>N. gonorrhoeae</i> through Horizontal Gene Transfer 
260 |b MDPI AG,   |c 2020-09-01T00:00:00Z. 
500 |a 10.3390/antibiotics9100656 
500 |a 2079-6382 
520 |a Nonpathogenic <i>Neisseria</i> transfer mutations encoding antibiotic resistance to their pathogenic relative <i>Neisseria gonorrhoeae</i>. However, the resistance genotypes and subsequent phenotypes of nonpathogens within the genus have been described infrequently. Here, we characterize the minimum inhibitory concentrations (MICs) of a panel of <i>Neisseria</i> (<i>n</i> = 26)-including several commensal species-to a suite of diverse antibiotics. We furthermore use whole genome sequencing and the Comprehensive Antibiotic Resistance Database Resistance Gene Identifier (RGI) platform to predict putative resistance-encoding mutations. Resistant isolates to all tested antimicrobials including penicillin (<i>n</i> = 5/26), ceftriaxone (<i>n</i> = 2/26), cefixime (<i>n</i> = 3/26), tetracycline (<i>n</i> = 10/26), azithromycin (<i>n</i> = 11/26), and ciprofloxacin (<i>n</i> = 4/26) were found. In total, 63 distinct mutations were predicted by RGI to be involved in resistance. The presence of several mutations had clear associations with increased MIC such as DNA gyrase subunit A (<i>gyrA</i>) (S91F) and ciprofloxacin, tetracycline resistance protein (<i>tetM</i>) and 30S ribosomal protein S10 (<i>rpsJ</i>) (V57M) and tetracycline, and TEM-type β-lactamases and penicillin. However, mutations with strong associations to macrolide and cephalosporin resistance were not conclusive. This work serves as an initial exploration into the resistance-encoding mutations harbored by nonpathogenic <i>Neisseria</i>, which will ultimately aid in prospective surveillance for novel resistance mechanisms that may be rapidly acquired by <i>N. gonorrhoeae</i>. 
546 |a EN 
690 |a resistome 
690 |a commensal bacteria 
690 |a horizontal gene transfer 
690 |a antibiotic resistance 
690 |a microbiome 
690 |a <i>Neisseria</i> 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Antibiotics, Vol 9, Iss 10, p 656 (2020) 
787 0 |n https://www.mdpi.com/2079-6382/9/10/656 
787 0 |n https://doaj.org/toc/2079-6382 
856 4 1 |u https://doaj.org/article/4c88adeb51e540fbb0dc5df774a1e562  |z Connect to this object online.