Rapid component of excess post-exercise oxygen consumption of children of different weight status after playing active video games

Abstract Background Excess post-exercise oxygen consumption (EPOC) of children could indicate the potential of an exercise therapy to treat or prevent obesity. However, EPOC as a result of playing active video games (AVG) has been poorly investigated. Therefore, we aimed to investigate the rapid com...

Full description

Saved in:
Bibliographic Details
Main Authors: Caio Victor Sousa (Author), Jungyun Hwang (Author), Herbert Gustavo Simoes (Author), Kyung Jin Sun (Author), Amy Shirong Lu (Author)
Format: Book
Published: BMC, 2021-02-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Excess post-exercise oxygen consumption (EPOC) of children could indicate the potential of an exercise therapy to treat or prevent obesity. However, EPOC as a result of playing active video games (AVG) has been poorly investigated. Therefore, we aimed to investigate the rapid component of EPOC of children with healthy weight and overweight/obesity (according to their BMI percentile) after playing AVGs that feature predominately upper body (UB) and whole-body (WB) movement. Methods Twenty-one children with healthy weight (BMI percentile < 85%) and with overweight/obesity (BMI percentile ≥ 85%) randomly underwent two 10-min AVG sessions (UB and WB). The heart rate (HR), minute ventilation (VE), oxygen consumption (VO2) and carbon dioxide production (VCO2) were recorded during exercise and post-exercise recovery period. For the rapid component of EPOC in each AVG session, measurements were recorded every 15 s for 5-min of post-exercise recovery. The rate of perceived exertion (RPE) was also measured immediately before and after each AVG play. Results Children with overweight/obesity had a higher average of absolute VE, VO2, and VCO2 than their healthy-weight counterparts (BMI percentile < 85%; n = 21) during post-exercise recovery. RPE, HR, and HR% were not different between the game sessions and weight groups. Children with overweight/obesity showed a higher absolute VO2 during EPOC than healthy-weight children in both game sessions, but relative VO2 was higher in healthy-weight children during EPOC. No differences were observed for EPOC between UB and WB sessions. Conclusions Children with overweight/obesity had a greater EPOC than healthy-weight children after AVG sessions in terms of absolute oxygen values, whereas healthy-weight children have higher EPOC considering relative VO2 when controlling for body mass. UB and WB AVGs induced a similar EPOC among children with healthy weight and overweight/obesity. As UB and WB AVGs induce the rapid component of EPOC in children regardless their weight status, AVGs could be used as an exercise method to treat and prevent child obesity.
Item Description:10.1186/s12887-021-02528-z
1471-2431