Starvation at the larval stage increases the vector competence of Aedes aegypti females for Zika virus.

Aedes aegypti is the primary vector of Zika virus (ZIKV), a flavivirus which typically presents itself as febrile-like symptoms in humans but can also cause neurological and pregnancy complications. The transmission cycle of mosquito-borne arboviruses such as ZIKV requires that various key tissues i...

Full description

Saved in:
Bibliographic Details
Main Authors: Christie S Herd (Author), DeAna G Grant (Author), Jingyi Lin (Author), Alexander W E Franz (Author)
Format: Book
Published: Public Library of Science (PLoS), 2021-11-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_4df3a73bb55c4724b5c1e40a105a25f5
042 |a dc 
100 1 0 |a Christie S Herd  |e author 
700 1 0 |a DeAna G Grant  |e author 
700 1 0 |a Jingyi Lin  |e author 
700 1 0 |a Alexander W E Franz  |e author 
245 0 0 |a Starvation at the larval stage increases the vector competence of Aedes aegypti females for Zika virus. 
260 |b Public Library of Science (PLoS),   |c 2021-11-01T00:00:00Z. 
500 |a 1935-2727 
500 |a 1935-2735 
500 |a 10.1371/journal.pntd.0010003 
520 |a Aedes aegypti is the primary vector of Zika virus (ZIKV), a flavivirus which typically presents itself as febrile-like symptoms in humans but can also cause neurological and pregnancy complications. The transmission cycle of mosquito-borne arboviruses such as ZIKV requires that various key tissues in the female mosquito get productively infected with the virus before the mosquito can transmit the virus to another vertebrate host. Following ingestion of a viremic blood-meal from a vertebrate, ZIKV initially infects the midgut epithelium before exiting the midgut after blood-meal digestion to disseminate to secondary tissues including the salivary glands. Here we investigated whether smaller Ae. aegypti females resulting from food deprivation as larvae exhibited an altered vector competence for blood-meal acquired ZIKV relative to larger mosquitoes. Midguts from small 'Starve' and large 'Control' Ae. aegypti were dissected to visualize by transmission electron microscopy (TEM) the midgut basal lamina (BL) as physical evidence for the midgut escape barrier showing Starve mosquitoes with a significantly thinner midgut BL than Control mosquitoes at two timepoints. ZIKV replication was inhibited in Starve mosquitoes following intrathoracic injection of virus, however, Starve mosquitoes exhibited a significantly higher midgut escape and population dissemination rate at 9 days post-infection (dpi) via blood-meal, with more virus present in saliva and head tissue than Control by 10 dpi and 14 dpi, respectively. These results indicate that Ae. aegypti developing under stressful conditions potentially exhibit higher midgut infection and dissemination rates for ZIKV as adults, Thus, variation in food intake as larvae is potentially a source for variable vector competence levels of the emerged adults for the virus. 
546 |a EN 
690 |a Arctic medicine. Tropical medicine 
690 |a RC955-962 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n PLoS Neglected Tropical Diseases, Vol 15, Iss 11, p e0010003 (2021) 
787 0 |n https://doi.org/10.1371/journal.pntd.0010003 
787 0 |n https://doaj.org/toc/1935-2727 
787 0 |n https://doaj.org/toc/1935-2735 
856 4 1 |u https://doaj.org/article/4df3a73bb55c4724b5c1e40a105a25f5  |z Connect to this object online.