Preparation of image databases for artificial intelligence algorithm development in gastrointestinal endoscopy

Over the past decade, technological advances in deep learning have led to the introduction of artificial intelligence (AI) in medical imaging. The most commonly used structure in image recognition is the convolutional neural network, which mimics the action of the human visual cortex. The applicatio...

Full description

Saved in:
Bibliographic Details
Main Authors: Chang Bong Yang (Author), Sang Hoon Kim (Author), Yun Jeong Lim (Author)
Format: Book
Published: Korean Society of Gastrointestinal Endoscopy, 2022-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_4f1eb8f7a8ae43a28bde53b07c3b26bd
042 |a dc 
100 1 0 |a Chang Bong Yang  |e author 
700 1 0 |a Sang Hoon Kim  |e author 
700 1 0 |a Yun Jeong Lim  |e author 
245 0 0 |a Preparation of image databases for artificial intelligence algorithm development in gastrointestinal endoscopy 
260 |b Korean Society of Gastrointestinal Endoscopy,   |c 2022-09-01T00:00:00Z. 
500 |a 2234-2400 
500 |a 2234-2443 
500 |a 10.5946/ce.2021.229 
520 |a Over the past decade, technological advances in deep learning have led to the introduction of artificial intelligence (AI) in medical imaging. The most commonly used structure in image recognition is the convolutional neural network, which mimics the action of the human visual cortex. The applications of AI in gastrointestinal endoscopy are diverse. Computer-aided diagnosis has achieved remarkable outcomes with recent improvements in machine-learning techniques and advances in computer performance. Despite some hurdles, the implementation of AI-assisted clinical practice is expected to aid endoscopists in real-time decision-making. In this summary, we reviewed state-of-the-art AI in the field of gastrointestinal endoscopy and offered a practical guide for building a learning image dataset for algorithm development. 
546 |a EN 
690 |a artificial intelligence 
690 |a deep learning 
690 |a gastrointestinal endoscopy 
690 |a Internal medicine 
690 |a RC31-1245 
690 |a Diseases of the digestive system. Gastroenterology 
690 |a RC799-869 
655 7 |a article  |2 local 
786 0 |n Clinical Endoscopy, Vol 55, Iss 5, Pp 594-604 (2022) 
787 0 |n http://www.e-ce.org/upload/pdf/ce-2021-229.pdf 
787 0 |n https://doaj.org/toc/2234-2400 
787 0 |n https://doaj.org/toc/2234-2443 
856 4 1 |u https://doaj.org/article/4f1eb8f7a8ae43a28bde53b07c3b26bd  |z Connect to this object online.