Curcumin-Loaded Mesoporous Silica Nanoparticles Dispersed in Thermo-Responsive Hydrogel as Potential Alzheimer Disease Therapy

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive and behavioral impairment. Curcumin-loaded mesoporous silica nanoparticles (MSN-CCM) can overcome the drawbacks related to the free curcumin (CCM) clinical application, such as water insolubility and low bioavai...

Full description

Saved in:
Bibliographic Details
Main Authors: Tais de Cassia Ribeiro (Author), Rafael Miguel Sábio (Author), Marcela Tavares Luiz (Author), Lucas Canto de Souza (Author), Bruno Fonseca-Santos (Author), Luis Carlos Cides da Silva (Author), Márcia Carvalho de Abreu Fantini (Author), Cleopatra da Silva Planeta (Author), Marlus Chorilli (Author)
Format: Book
Published: MDPI AG, 2022-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive and behavioral impairment. Curcumin-loaded mesoporous silica nanoparticles (MSN-CCM) can overcome the drawbacks related to the free curcumin (CCM) clinical application, such as water insolubility and low bioavailability, besides acting over the main causes associated to AD. A thermo-responsive hydrogel is an interesting approach for facilitating the administration of the nanosystem via a nasal route, as well as for overcoming mucociliary clearance mechanisms. In light of this, MSN-CCM were dispersed in the hydrogel and evaluated through in vitro and in vivo assays. The MSNs and MSN-CCM were successfully characterized by physicochemical analysis and a high value of the CCM encapsulation efficiency (EE%, 87.70 ± 0.05) was achieved. The designed thermo-responsive hydrogel (HG) was characterized by rheology, texture profile analysis, and ex vivo mucoadhesion, showing excellent mechanical and mucoadhesive properties. Ex vivo permeation studies of MSN-CCM and HG@MSN-CCM showed high permeation values (12.46 ± 1.08 and 28.40 ± 1.88 μg cm<sup>−2</sup> of CCM, respectively) in porcine nasal mucosa. In vivo studies performed in a streptozotocin-induced AD model confirmed that HG@MSN-CCM reverted the cognitive deficit in mice, acting as a potential formulation in the treatment of AD.
Item Description:10.3390/pharmaceutics14091976
1999-4923