Synthesis and cytotoxic evaluation of novel quinazolinone derivatives as potential anticancer agents

Nitrogen-rich heterocyclic compounds represent a unique class of chemicals with especial properties and have been modified to design novel pharmaceutically active compounds. In this study, a series of novel quinazolinone derivatives with substituted quinoxalindione were synthesized in two parts. In...

Full description

Saved in:
Bibliographic Details
Main Authors: Safoora Poorirani (Author), Sedighe Sadeghian-Rizi (Author), Ghadamali Khodarahmi (Author), Marzieh Rahmani Khajouei (Author), Farshid Hassanzadeh (Author)
Format: Book
Published: Wolters Kluwer Medknow Publications, 2018-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nitrogen-rich heterocyclic compounds represent a unique class of chemicals with especial properties and have been modified to design novel pharmaceutically active compounds. In this study, a series of novel quinazolinone derivatives with substituted quinoxalindione were synthesized in two parts. In the first part, 6-(4-amino-3-methylphenoxy)quinoxaline-2,3(1H,4H)-dione was prepared from para-amino -m-crozol in 5 steps. In the next part, 2-alkyl-4H-benzo[d][1,3]oxazin-4-one derivatives were obtained from antranilic acid. Then reaction of 6-(4-amino-3-methylphenoxy)quinoxaline-2,3(1H,4H)-dione with 2-alkyl-4H-benzo[d][1,3]oxazin-4-one derivatives resulted in the production of final componds. The structures of synthesized compounds were confirmed by IR and 1H-NMR. Cytotoxic activity of the compounds were evaluated at 0.1, 1, 10, 50 and 100 μM concentrations against MCF-7 and HeLa cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. Almost all new compounds showed cytotoxic activity in both cell lines. Among tested compounds, 11g displayed the highest cytotoxic activity against both cell lines.
Item Description:1735-5362
1735-9414
10.4103/1735-5362.236838