Acetazolamide and human carbonic anhydrases: retrospect, review and discussion of an intimate relationship

AbstractAcetazolamide (AZM) is a strong pharmacological sulphonamide-type (R-SO2-NH2, pKa 7.2) inhibitor of the activity of several carbonic anhydrase (CA) isoforms, notably of renal CA II (Ki, 12 nM) and CA IV (Ki, 74 nM). AZM is clinically used for about eighty years in various diseases including...

Full description

Saved in:
Bibliographic Details
Main Author: Dimitrios Tsikas (Author)
Format: Book
Published: Taylor & Francis Group, 2024-12-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_5232f3b43c664ea5afa07c97c54d723b
042 |a dc 
100 1 0 |a Dimitrios Tsikas  |e author 
245 0 0 |a Acetazolamide and human carbonic anhydrases: retrospect, review and discussion of an intimate relationship 
260 |b Taylor & Francis Group,   |c 2024-12-01T00:00:00Z. 
500 |a 10.1080/14756366.2023.2291336 
500 |a 1475-6374 
500 |a 1475-6366 
520 |a AbstractAcetazolamide (AZM) is a strong pharmacological sulphonamide-type (R-SO2-NH2, pKa 7.2) inhibitor of the activity of several carbonic anhydrase (CA) isoforms, notably of renal CA II (Ki, 12 nM) and CA IV (Ki, 74 nM). AZM is clinically used for about eighty years in various diseases including epilepsy and glaucoma. Pharmacological AZM increases temporarily the urinary excretion of bicarbonate (HCO3-) and sodium ions (Na+) and sustainably the urinary pH. AZM is excreted almost unchanged over several hours at high rates in the urine. Closely parallel concentrations of circulating and excretory AZM are observed upon administration of therapeutical doses of AZM. In a proof-of-principle study, we investigated the effects of the ingestion of a 250-mg AZM-containing tablet by a healthy volunteer on the urinary excretion of organic and inorganic substances over 5 h (range, 0, 0.5, 1, 1.5, 2, 3, 4, 5 h). Measured analytes included: AZM, amino acids and their metabolites such as guanidinoacetate, i.e. the precursor of creatine, of asymmetrically (ADMA) and symmetrically (SDMA) dimethylated arginine, nitrite (O = N-O-, pKa 3.4) and nitrate (O2N-O-, pKa −1.37), the major metabolites of nitric oxide (NO), the C-H acidic malondialdehyde (MDA; (CHO)2CH2, pKa 4.5), and creatinine for correction of analytes excretion. All analytes were measured by validated isotopologues using gas chromatography-mass spectrometry (GC-MS) methods. AZM excretion in the urine reached its maximum value after 2 h and was fairly stable for the next 3 h. Time series analysis by the ARIMA method was performed. AZM ingestion increased temporarily the urinary excretion of the amino acids Leu + Ile, nitrite and nitrate, decreased temporarily the urinary excretion of other amino acids. AZM decreased sustainably the urinary excretion of MDA, a biomarker of oxidative stress (i.e. lipid peroxidation). Whether this decrease is due to inhibition of the excretion of MDA or attenuation of oxidative stress by AZM is unknown. The acute and chronic effects of AZM on the urinary excretion of electrolytes and physiological substances reported in the literature are discussed in depth in the light of its extraordinary pharmacokinetics and pharmacodynamics. Tolerance development/drug resistance to AZM in chronic use and potential mechanisms are also addressed. 
546 |a EN 
690 |a Acetazolamide 
690 |a amino acids 
690 |a bicarbonate 
690 |a carbonic anhydrases 
690 |a excretion 
690 |a inhibition 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Journal of Enzyme Inhibition and Medicinal Chemistry, Vol 39, Iss 1 (2024) 
787 0 |n https://www.tandfonline.com/doi/10.1080/14756366.2023.2291336 
787 0 |n https://doaj.org/toc/1475-6366 
787 0 |n https://doaj.org/toc/1475-6374 
856 4 1 |u https://doaj.org/article/5232f3b43c664ea5afa07c97c54d723b  |z Connect to this object online.