SERS spectroscopy with machine learning to analyze human plasma derived sEVs for coronary artery disease diagnosis and prognosis

Abstract Coronary artery disease (CAD) is one of the major cardiovascular diseases and represents the leading causes of global mortality. Developing new diagnostic and therapeutic approaches for CAD treatment are critically needed, especially for an early accurate CAD detection and further timely in...

Szczegółowa specyfikacja

Zapisane w:
Opis bibliograficzny
Główni autorzy: Xi Huang (Autor), Bo Liu (Autor), Shenghan Guo (Autor), Weihong Guo (Autor), Ke Liao (Autor), Guoku Hu (Autor), Wen Shi (Autor), Mitchell Kuss (Autor), Michael J. Duryee (Autor), Daniel R. Anderson (Autor), Yongfeng Lu (Autor), Bin Duan (Autor)
Format: Książka
Wydane: Wiley, 2023-03-01T00:00:00Z.
Hasła przedmiotowe:
Dostęp online:Connect to this object online.
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_5681e5f9533c47aa85434c25877a1afb
042 |a dc 
100 1 0 |a Xi Huang  |e author 
700 1 0 |a Bo Liu  |e author 
700 1 0 |a Shenghan Guo  |e author 
700 1 0 |a Weihong Guo  |e author 
700 1 0 |a Ke Liao  |e author 
700 1 0 |a Guoku Hu  |e author 
700 1 0 |a Wen Shi  |e author 
700 1 0 |a Mitchell Kuss  |e author 
700 1 0 |a Michael J. Duryee  |e author 
700 1 0 |a Daniel R. Anderson  |e author 
700 1 0 |a Yongfeng Lu  |e author 
700 1 0 |a Bin Duan  |e author 
245 0 0 |a SERS spectroscopy with machine learning to analyze human plasma derived sEVs for coronary artery disease diagnosis and prognosis 
260 |b Wiley,   |c 2023-03-01T00:00:00Z. 
500 |a 2380-6761 
500 |a 10.1002/btm2.10420 
520 |a Abstract Coronary artery disease (CAD) is one of the major cardiovascular diseases and represents the leading causes of global mortality. Developing new diagnostic and therapeutic approaches for CAD treatment are critically needed, especially for an early accurate CAD detection and further timely intervention. In this study, we successfully isolated human plasma small extracellular vesicles (sEVs) from four stages of CAD patients, that is, healthy control, stable plaque, non‐ST‐elevation myocardial infarction, and ST‐elevation myocardial infarction. Surface‐enhanced Raman scattering (SERS) measurement in conjunction with five machine learning approaches, including Quadratic Discriminant Analysis, Support Vector Machine (SVM), K‐Nearest Neighbor, Artificial Neural network, were then applied for the classification and prediction of the sEV samples. Among these five approaches, the overall accuracy of SVM shows the best predication results on both early CAD detection (86.4%) and overall prediction (92.3%). SVM also possesses the highest sensitivity (97.69%) and specificity (95.7%). Thus, our study demonstrates a promising strategy for noninvasive, safe, and high accurate diagnosis for CAD early detection. 
546 |a EN 
690 |a coronary artery disease 
690 |a diagnostics 
690 |a machine learning 
690 |a small extracellular vesicles 
690 |a spectrogram 
690 |a Chemical engineering 
690 |a TP155-156 
690 |a Biotechnology 
690 |a TP248.13-248.65 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Bioengineering & Translational Medicine, Vol 8, Iss 2, Pp n/a-n/a (2023) 
787 0 |n https://doi.org/10.1002/btm2.10420 
787 0 |n https://doaj.org/toc/2380-6761 
856 4 1 |u https://doaj.org/article/5681e5f9533c47aa85434c25877a1afb  |z Connect to this object online.