Identification of asthma-related genes using asthmatic blood eQTLs of Korean patients

Abstract Background More than 200 asthma-associated genetic variants have been identified in genome-wide association studies (GWASs). Expression quantitative trait loci (eQTL) data resources can help identify causal genes of the GWAS signals, but it can be difficult to find an eQTL that reflects the...

Full description

Saved in:
Bibliographic Details
Main Authors: Dong Jun Kim (Author), Ji Eun Lim (Author), Hae-Un Jung (Author), Ju Yeon Chung (Author), Eun Ju Baek (Author), Hyein Jung (Author), Shin Young Kwon (Author), Han Kyul Kim (Author), Ji-One Kang (Author), Kyungtaek Park (Author), Sungho Won (Author), Tae-Bum Kim (Author), Bermseok Oh (Author)
Format: Book
Published: BMC, 2023-10-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_5709201c48f34b3c9c3613a74dac8ddf
042 |a dc 
100 1 0 |a Dong Jun Kim  |e author 
700 1 0 |a Ji Eun Lim  |e author 
700 1 0 |a Hae-Un Jung  |e author 
700 1 0 |a Ju Yeon Chung  |e author 
700 1 0 |a Eun Ju Baek  |e author 
700 1 0 |a Hyein Jung  |e author 
700 1 0 |a Shin Young Kwon  |e author 
700 1 0 |a Han Kyul Kim  |e author 
700 1 0 |a Ji-One Kang  |e author 
700 1 0 |a Kyungtaek Park  |e author 
700 1 0 |a Sungho Won  |e author 
700 1 0 |a Tae-Bum Kim  |e author 
700 1 0 |a Bermseok Oh  |e author 
245 0 0 |a Identification of asthma-related genes using asthmatic blood eQTLs of Korean patients 
260 |b BMC,   |c 2023-10-01T00:00:00Z. 
500 |a 10.1186/s12920-023-01677-7 
500 |a 1755-8794 
520 |a Abstract Background More than 200 asthma-associated genetic variants have been identified in genome-wide association studies (GWASs). Expression quantitative trait loci (eQTL) data resources can help identify causal genes of the GWAS signals, but it can be difficult to find an eQTL that reflects the disease state because most eQTL data are obtained from normal healthy subjects. Methods We performed a blood eQTL analysis using transcriptomic and genotypic data from 433 Korean asthma patients. To identify asthma-related genes, we carried out colocalization, Summary-based Mendelian Randomization (SMR) analysis, and Transcriptome-Wide Association Study (TWAS) using the results of asthma GWASs and eQTL data. In addition, we compared the results of disease eQTL data and asthma-related genes with two normal blood eQTL data from Genotype-Tissue Expression (GTEx) project and a Japanese study. Results We identified 340,274 cis-eQTL and 2,875 eGenes from asthmatic eQTL analysis. We compared the disease eQTL results with GTEx and a Japanese study and found that 64.1% of the 2,875 eGenes overlapped with the GTEx eGenes and 39.0% with the Japanese eGenes. Following the integrated analysis of the asthmatic eQTL data with asthma GWASs, using colocalization and SMR methods, we identified 15 asthma-related genes specific to the Korean asthmatic eQTL data. Conclusions We provided Korean asthmatic cis-eQTL data and identified asthma-related genes by integrating them with GWAS data. In addition, we suggested these asthma-related genes as therapeutic targets for asthma. We envisage that our findings will contribute to understanding the etiological mechanisms of asthma and provide novel therapeutic targets. 
546 |a EN 
690 |a Asthma 
690 |a Expression quantitative trait loci 
690 |a Genome-wide association study 
690 |a Colocalization 
690 |a Summary-based Mendelian Randomization 
690 |a Transcriptome-wide association study 
690 |a Internal medicine 
690 |a RC31-1245 
690 |a Genetics 
690 |a QH426-470 
655 7 |a article  |2 local 
786 0 |n BMC Medical Genomics, Vol 16, Iss 1, Pp 1-12 (2023) 
787 0 |n https://doi.org/10.1186/s12920-023-01677-7 
787 0 |n https://doaj.org/toc/1755-8794 
856 4 1 |u https://doaj.org/article/5709201c48f34b3c9c3613a74dac8ddf  |z Connect to this object online.