Maintaining Academic Integrity in Programming: Locality-Sensitive Hashing and Recommendations
Not many efficient similarity detectors are employed in practice to maintain academic integrity. Perhaps it is because they lack intuitive reports for investigation, they only have a command line interface, and/or they are not publicly accessible. This paper presents SSTRANGE, an efficient similarit...
Sparad:
Huvudupphovsman: | |
---|---|
Materialtyp: | Bok |
Publicerad: |
MDPI AG,
2023-01-01T00:00:00Z.
|
Ämnen: | |
Länkar: | Connect to this object online. |
Taggar: |
Lägg till en tagg
Inga taggar, Lägg till första taggen!
|
Internet
Connect to this object online.3rd Floor Main Library
Signum: |
A1234.567 |
---|---|
Exemplar 1 | Tillgänglig |