Building an AI-era healthcare business

The integration of Artificial Intelligence (AI) into healthcare is revolutionising the industry, providing novel opportunities for businesses to innovate and enhance patient care. This review utilised 35 peer-reviewed, relevant, and current papers written in English, with full texts available from a...

Szczegółowa specyfikacja

Zapisane w:
Opis bibliograficzny
Główni autorzy: Prof. V. E. Adamu (Autor), NIF Eneojo (Autor)
Format: Książka
Wydane: Orapuh, Inc., 2024-08-01T00:00:00Z.
Hasła przedmiotowe:
Dostęp online:Connect to this object online.
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_5a9c65223c5646eda67e6e96604a80eb
042 |a dc 
100 1 0 |a Prof. V. E. Adamu  |e author 
700 1 0 |a NIF Eneojo  |e author 
245 0 0 |a Building an AI-era healthcare business 
260 |b Orapuh, Inc.,   |c 2024-08-01T00:00:00Z. 
500 |a 10.4314/orapj.v5i4.39 
500 |a 2644-3740 
520 |a The integration of Artificial Intelligence (AI) into healthcare is revolutionising the industry, providing novel opportunities for businesses to innovate and enhance patient care. This review utilised 35 peer-reviewed, relevant, and current papers written in English, with full texts available from a pool of 365 articles retrieved from PubMed, IEEE Xplore, Google Scholar, ScienceDirect, and Web of Science. This comprehensive review ensures that the included articles are highly relevant, credible, and offer valuable insights into building a healthcare business in the AI era. The article serves as a comprehensive guide for building a successful AI-driven healthcare business, detailing key technologies such as machine learning, natural language processing, computer vision, and robotics. It explores market opportunities, strategic planning, implementation, and future trends. By addressing market needs, navigating challenges, and staying ahead of innovations, businesses can harness AI to transform healthcare delivery. The paper also covers regulatory and ethical considerations, technical and operational challenges, risk management, and strategies for scaling AI solutions. The goal is to provide a structured approach to leveraging AI in healthcare, ensuring improved patient outcomes and operational efficiency. 
546 |a EN 
690 |a Artificial Intelligence 
690 |a healthcare business 
690 |a predictive analytics 
690 |a machine learning 
690 |a regulatory compliance 
690 |a Internal medicine 
690 |a RC31-1245 
690 |a Medicine (General) 
690 |a R5-920 
655 7 |a article  |2 local 
786 0 |n Orapuh Journal, Vol 5, Iss 4 (2024) 
787 0 |n https://orapuh.org/ojs/ojs-3.1.2-4/index.php/orapj/article/view/262 
787 0 |n https://doaj.org/toc/2644-3740 
856 4 1 |u https://doaj.org/article/5a9c65223c5646eda67e6e96604a80eb  |z Connect to this object online.