N-type Calcium Channel Inhibition With Cilnidipine Elicits Glomerular Podocyte Protection Independent of Sympathetic Nerve Inhibition

We recently demonstrated that cilnidipine, an L/N-type calcium channel blocker, elicits protective effects against glomerular podocyte injury, in particular, in obese hypertensive rats that express the N-type calcium channel (N-CC). Since the N-CC is known to be expressed in sympathetic nerve ending...

Full description

Saved in:
Bibliographic Details
Main Authors: Bai Lei (Author), Daisuke Nakano (Author), Yoshihide Fujisawa (Author), Ya Liu (Author), Hirofumi Hitomi (Author), Hiroyuki Kobori (Author), Hirohito Mori (Author), Tsutomu Masaki (Author), Katsuhiko Asanuma (Author), Yasuhiko Tomino (Author), Akira Nishiyama (Author)
Format: Book
Published: Elsevier, 2012-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We recently demonstrated that cilnidipine, an L/N-type calcium channel blocker, elicits protective effects against glomerular podocyte injury, in particular, in obese hypertensive rats that express the N-type calcium channel (N-CC). Since the N-CC is known to be expressed in sympathetic nerve endings, we evaluated the reno-protective effects of cilnidipine in innervated and denervated spontaneously hypertensive rats (SHR). Male SHR were uninephrectomized and fed 4% high-salt diet (HS-UNX-SHR). Animals were divided into groups, as follows, and observed from 9 to 27 weeks of age: 1) vehicle (n = 14), 2) vehicle plus renal-denervation (n = 15), 3) cilnidipine (50 mg/kg per day, p.o.; n = 10), and 4) cilnidipine plus renal-denervation (n = 15). Renal denervation attenuated elevations in blood pressure, but failed to suppress urinary protein excretion and podocyte injury in HS-UNX-SHR. Cilnidipine in both innervated and denervated HS-UNX-SHR similarly induced significant antihypertensive effects, as well as suppressing the urinary protein excretion and podocyte injury, compared to vehicle-treated HS-UNX-SHR. These data indicate that renal nerves have a limited contribution to the cilnidipine-induced reno-protective effects in HS-UNX-SHR. Keywords:: cilnidipine, hypertension, N-type calcium channel, podocyte, renal sympathetic nerve
Item Description:1347-8613
10.1254/jphs.12075FP