Design and optimization of crocetin loaded PLGA nanoparticles against diabetic nephropathy via suppression of inflammatory biomarkers: a formulation approach to preclinical study

Diabetic nephropathy (DN) is a serious complication of diabetes mellitus whose expand process is linked with the fibrosis, renal hypertrophy and inflammation. The current study was to formulate and optimize the nano-formulation of crocetin (CT-PLGA-NPs) against Streptozotocin-induced renal nephropat...

Full description

Saved in:
Bibliographic Details
Main Author: Xiaodong Yang (Author)
Format: Book
Published: Taylor & Francis Group, 2019-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_62acf6337ba94e61bcf1601bbe0a18a2
042 |a dc 
100 1 0 |a Xiaodong Yang  |e author 
245 0 0 |a Design and optimization of crocetin loaded PLGA nanoparticles against diabetic nephropathy via suppression of inflammatory biomarkers: a formulation approach to preclinical study 
260 |b Taylor & Francis Group,   |c 2019-01-01T00:00:00Z. 
500 |a 1071-7544 
500 |a 1521-0464 
500 |a 10.1080/10717544.2019.1642417 
520 |a Diabetic nephropathy (DN) is a serious complication of diabetes mellitus whose expand process is linked with the fibrosis, renal hypertrophy and inflammation. The current study was to formulate and optimize the nano-formulation of crocetin (CT-PLGA-NPs) against Streptozotocin-induced renal nephropathy in rats. Double emulsion evaporation technique was used for the preparation of CT-PLGA-NPs. CT-PLGA-NPs were scrutinized for polydispersity index, size, gastric stability, entrapment, drug-loading capacity and in-vitro drug release and in vivo preclinical study. Single intraperitoneal injection of streptozotocin (STZ) (55 mg/kg) and rats were divided into different group. Renal function and metabolic parameters of urine and serum were estimated. Fibrotic protein, renal pro-inflammatory cytokines and degree of renal damage expression were also determined. We also estimated the fibronectin, type IV collagen and transforming growth factor-β1 for a possible mechanism of action. Crocetin supplement (10 mg/kg) and CT-PLGA-NPs exhibited the accumulation of the drug in kidney and liver of diabetic rats. Crocetin reduced the BGL and enhanced plasma insulin and body weight. Dose dependent treatment of crocetin significantly (p < .001) down-regulated the expression of renal tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin (IL)-1β (IL-1β) and Monocyte Chemoattractant Protein-1 (MCP-1). Crocetin significantly (p < .001) altered the expression of fibronectin, type IV collagen, and transforming growth factor-β1 (TGF-1β). Crocetin significantly (p < .001) down-regulated the protein kinase C activity and the expression of nuclear factor κB (NF-κB) p65 activity and protein production in renal tissue. On the basis of the available result, we can conclude that nano-formulation of crocetin could attenuate the diabetic nephropathy via antifibrotic and anti-inflammatory effect. 
546 |a EN 
690 |a crocetin 
690 |a plga loaded nanoparticles 
690 |a antidiabetic 
690 |a protein kinase c 
690 |a antifibrotic 
690 |a streptozotocin 
690 |a nf-kb 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Drug Delivery, Vol 26, Iss 1, Pp 849-859 (2019) 
787 0 |n http://dx.doi.org/10.1080/10717544.2019.1642417 
787 0 |n https://doaj.org/toc/1071-7544 
787 0 |n https://doaj.org/toc/1521-0464 
856 4 1 |u https://doaj.org/article/62acf6337ba94e61bcf1601bbe0a18a2  |z Connect to this object online.