AI-driven drug repurposing and binding pose meta dynamics identifies novel targets for monkeypox virus
Monkeypox virus (MPXV) was confirmed in May 2022 and designated a global health emergency by WHO in July 2022. MPX virions are big, enclosed, brick-shaped, and contain a linear, double-stranded DNA genome as well as enzymes. MPXV particles bind to the host cell membrane via a variety of viral-host p...
Saved in:
Main Authors: | , , |
---|---|
Format: | Book |
Published: |
Elsevier,
2023-05-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Monkeypox virus (MPXV) was confirmed in May 2022 and designated a global health emergency by WHO in July 2022. MPX virions are big, enclosed, brick-shaped, and contain a linear, double-stranded DNA genome as well as enzymes. MPXV particles bind to the host cell membrane via a variety of viral-host protein interactions. As a result, the wrapped structure is a potential therapeutic target. DeepRepurpose, an artificial intelligence-based compound-viral proteins interaction framework, was used via a transfer learning setting to prioritize a set of FDA approved and investigational drugs which can potentially inhibit MPXV viral proteins. To filter and narrow down the lead compounds from curated collections of pharmaceutical compounds, we used a rigorous computational framework that included homology modeling, molecular docking, dynamic simulations, binding free energy calculations, and binding pose metadynamics. We identified Elvitegravir as a potential inhibitor of MPXV virus using our comprehensive pipeline. |
---|---|
Item Description: | 1876-0341 10.1016/j.jiph.2023.03.007 |