The effect of short-term heat stress on protein synthesis signaling in isolated rat skeletal muscle
Heat stress (HS) is a potent stimulus for activating glucose metabolism in skeletal muscles. However, the effect of short-term HS on protein turnover in skeletal muscles is unclear. This study aimed to investigate the effect of short-term HS on protein synthesis and protein degradation in skeletal m...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Book |
Published: |
Japanese Society of Physical Fitness and Sports Medicine,
2018-01-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Heat stress (HS) is a potent stimulus for activating glucose metabolism in skeletal muscles. However, the effect of short-term HS on protein turnover in skeletal muscles is unclear. This study aimed to investigate the effect of short-term HS on protein synthesis and protein degradation in skeletal muscles. The epitrochlearis muscle was isolated from male Sprague-Dawley rats weighing 150-160 grams (g) and incubated with or without HS at 42°C for 10 or 30 min in alpha minimum essential medium. HS for 30 min significantly decreased phosphorylation of 70-kDa ribosomal protein S6 kinase at Thr389 and 4E-binding protein 1 at Thr37/46. Correspondingly, HS for 30 min decreased the rate of protein synthesis. In contrast, HS had no effect on the expression of autophagy-related proteins, including microtubule-associated protein light chain 3 and p62, or on the mRNA expression of muscle-specific ubiquitin ligases, including muscle RING-finger 1 (MuRF1) and atrogin-1/MAFbx. These findings suggested that short-term HS for approximately 30 min is a physiologically relevant stimulus that suppresses protein synthesis signaling in skeletal muscles. |
---|---|
Item Description: | 2186-8131 2186-8123 10.7600/jpfsm.7.87 |