Pharmacological inhibition of lipolysis prevents adverse metabolic outcomes during glucocorticoid administration

Objective: Glucocorticoids are one of the most commonly prescribed classes of anti-inflammatory drugs; however, chronic treatment promotes iatrogenic (drug-induced) diabetes. As part of their physiological role, glucocorticoids stimulate lipolysis to spare glucose. We hypothesized that persistent st...

Full description

Saved in:
Bibliographic Details
Main Authors: Melissa A. Linden (Author), Susan J. Burke (Author), Humza A. Pirzadah (Author), Tai-Yu Huang (Author), Heidi M. Batdorf (Author), Walid K. Mohammed (Author), Katarina A. Jones (Author), Sujoy Ghosh (Author), Shawn R. Campagna (Author), J. Jason Collier (Author), Robert C. Noland (Author)
Format: Book
Published: Elsevier, 2023-08-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective: Glucocorticoids are one of the most commonly prescribed classes of anti-inflammatory drugs; however, chronic treatment promotes iatrogenic (drug-induced) diabetes. As part of their physiological role, glucocorticoids stimulate lipolysis to spare glucose. We hypothesized that persistent stimulation of lipolysis during glucocorticoid therapy plays a causative role in the development of iatrogenic diabetes. Methods: Male C57BL/6J mice were given 100 μg/mL corticosterone (Cort) in the drinking water for two weeks and were fed either normal chow (TekLad 8640) or the same diet supplemented with an adipose triglyceride lipase inhibitor (Atglistatin - 2  g/kg diet) to inhibit the first step of lipolysis. Results: Herein, we report for the first time that glucocorticoid administration promotes a unique state of substrate excess and energetic overload in skeletal muscle that primarily results from the rampant mobilization of endogenous fuels. Inhibiting lipolysis protected mice from Cort-induced gains in fat mass, excess ectopic lipid accrual, hyperinsulinemia, and hyperglycemia. The role lipolysis plays in Cort-mediated pathology appears to differ between tissues. Within skeletal muscle, Cort-induced lipolysis facilitated diversion of glucose-derived carbons toward the pentose phosphate and hexosamine biosynthesis pathways but contributed to <3% of the Cort-induced genomic adaptations. In contrast, Cort stimulation of lipolysis accounted for ∼35% of the genomic changes in the liver but had minimal impact on hepatic metabolites reported. Conclusions: These data support the idea that activation of lipolysis plays a causal role in the progression toward iatrogenic diabetes during glucocorticoid therapy with differential impact on skeletal muscle and liver.
Item Description:2212-8778
10.1016/j.molmet.2023.101751