Biomedical Applications of Hyaluronic Acid-Based Nanomaterials in Hyperthermic Cancer Therapy

Hyaluronic acid (HA) is a non-sulfated polysaccharide polymer with the properties of biodegradability, biocompatibility, and non-toxicity. Additionally, HA specifically binds to certain receptors that are over-expressed in cancer cells. To maximize the effect of drug delivery and cancer treatment, d...

Full description

Saved in:
Bibliographic Details
Main Authors: Subin Kim (Author), Myeong ju Moon (Author), Suchithra Poilil Surendran (Author), Yong Yeon Jeong (Author)
Format: Book
Published: MDPI AG, 2019-07-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyaluronic acid (HA) is a non-sulfated polysaccharide polymer with the properties of biodegradability, biocompatibility, and non-toxicity. Additionally, HA specifically binds to certain receptors that are over-expressed in cancer cells. To maximize the effect of drug delivery and cancer treatment, diverse types of nanomaterials have been developed. HA-based nanomaterials, including micelles, polymersomes, hydrogels, and nanoparticles, play a critical role in efficient drug delivery and cancer treatment. Hyperthermic cancer treatment using HA-based nanomaterials has attracted attention as an efficient cancer treatment approach. In this paper, the biomedical applications of HA-based nanomaterials in hyperthermic cancer treatment and combined therapies are summarized. HA-based nanomaterials may become a representative platform in hyperthermic cancer treatment.
Item Description:1999-4923
10.3390/pharmaceutics11070306