High Light Intensity Triggered Abscisic Acid Biosynthesis Mediates Anthocyanin Accumulation in Young Leaves of Tea Plant (<i>Camellia sinensis</i>)

There is increasing interest in the production and consumption of tea (<i>Camellia sinensis</i> L.) processed from purple-leaved cultivar due to their high anthocyanin content and health benefits. However, how and why seasonal changes affect anthocyanin accumulation in young tea leaves s...

Whakaahuatanga katoa

I tiakina i:
Ngā taipitopito rārangi puna kōrero
Ngā kaituhi matua: Chenxi Gao (Author), Yue Sun (Author), Jing Li (Author), Zhe Zhou (Author), Xuming Deng (Author), Zhihui Wang (Author), Shaoling Wu (Author), Lin Lin (Author), Yan Huang (Author), Wen Zeng (Author), Shiheng Lyu (Author), Jianjun Chen (Author), Shixian Cao (Author), Shuntian Yu (Author), Zhidan Chen (Author), Weijiang Sun (Author), Zhihui Xue (Author)
Hōputu: Pukapuka
I whakaputaina: MDPI AG, 2023-02-01T00:00:00Z.
Ngā marau:
Urunga tuihono:Connect to this object online.
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_6acbf77bbd68471f9b4ccaf5a60b13c4
042 |a dc 
100 1 0 |a Chenxi Gao  |e author 
700 1 0 |a Yue Sun  |e author 
700 1 0 |a Jing Li  |e author 
700 1 0 |a Zhe Zhou  |e author 
700 1 0 |a Xuming Deng  |e author 
700 1 0 |a Zhihui Wang  |e author 
700 1 0 |a Shaoling Wu  |e author 
700 1 0 |a Lin Lin  |e author 
700 1 0 |a Yan Huang  |e author 
700 1 0 |a Wen Zeng  |e author 
700 1 0 |a Shiheng Lyu  |e author 
700 1 0 |a Jianjun Chen  |e author 
700 1 0 |a Shixian Cao  |e author 
700 1 0 |a Shuntian Yu  |e author 
700 1 0 |a Zhidan Chen  |e author 
700 1 0 |a Weijiang Sun  |e author 
700 1 0 |a Zhihui Xue  |e author 
245 0 0 |a High Light Intensity Triggered Abscisic Acid Biosynthesis Mediates Anthocyanin Accumulation in Young Leaves of Tea Plant (<i>Camellia sinensis</i>) 
260 |b MDPI AG,   |c 2023-02-01T00:00:00Z. 
500 |a 10.3390/antiox12020392 
500 |a 2076-3921 
520 |a There is increasing interest in the production and consumption of tea (<i>Camellia sinensis</i> L.) processed from purple-leaved cultivar due to their high anthocyanin content and health benefits. However, how and why seasonal changes affect anthocyanin accumulation in young tea leaves still remains obscured. In this study, anthocyanin and abscisic acid (ABA) contents in young leaves of Zifuxing 1 (ZFX1), a cultivar with new shoots turning to purple in Wuyi Mountain, a key tea production region in China, were monitored over four seasons. Young leaves produced in September were highly purplish, which was accompanied with higher anthocyanin and ABA contents. Among the environmental factors, the light intensity in particular was closely correlated with anthocyanin and ABA contents. A shade experiment also indicated that anthocyanin content significantly decreased after 168 h growth under 75% shade, but ABA treatment under the shade conditions sustained anthocyanin content. To confirm the involvement of ABA in the modulation of anthocyanin accumulation, anthocyanin, carotenoids, chlorophyll, ABA, jasmonic acid (JA), and salicylic acid (SA) in the young leaves of four cultivars, including ZFX1, Zijuan (ZJ), wherein leaves are completely purple, Rougui (RG) and Fudingdabaicha (FDDB) wherein leaves are green, were analyzed, and antioxidant activities of the leaf extracts were tested. Results showed that ABA, not other tested hormones, was significantly correlated with anthocyanin accumulation in the purple-leaved cultivars. Cultivars with higher anthocyanin contents exhibited higher antioxidant activities. Subsequently, ZFX1 plants were grown under full sun and treated with ABA and fluridone (Flu), an ABA inhibitor. ABA treatment elevated anthocyanin level but decreased chlorophyll contents. The reverse was true to those treated with Flu. To pursue a better understanding of ABA involvement in anthocyanin accumulation, RNA-Seq was used to analyze transcript differences among ABA- or Flu-treated and untreated ZFX1 plants. Results indicated that the differentially expressed genes in ABA or Flu treatment were mainly ABA signal sensing and metabolism-related genes, anthocyanin accumulation-related genes, light-responsive genes, and key regulatory MYB transcription factors. Taking all the results into account, a model for anthocyanin accumulation in ZFX1 cultivar was proposed: high light intensity caused reactive oxygen stress, which triggered the biosynthesis of ABA; ABA interactions with transcription factors, such as MYB-enhanced anthocyanin biosynthesis limited chlorophyll and carotenoid accumulation; and transport of anthocyanin to vacuoles resulting in the young leaves of ZFX1 with purplish coloration. Further research is warranted to test this model. 
546 |a EN 
690 |a ABA 
690 |a antioxidant activity 
690 |a <i>Camellia sinensis</i> 
690 |a purple leaves 
690 |a ROS 
690 |a transcriptome analysis 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Antioxidants, Vol 12, Iss 2, p 392 (2023) 
787 0 |n https://www.mdpi.com/2076-3921/12/2/392 
787 0 |n https://doaj.org/toc/2076-3921 
856 4 1 |u https://doaj.org/article/6acbf77bbd68471f9b4ccaf5a60b13c4  |z Connect to this object online.