Self-propelled nanomotor reconstructs tumor microenvironment through synergistic hypoxia alleviation and glycolysis inhibition for promoted anti-metastasis

Solid tumors always exhibit local hypoxia, resulting in the high metastasis and inertness to chemotherapy. Reconstruction of hypoxic tumor microenvironment (TME) is considered a potential therapy compared to directly killing tumor cells. However, the insufficient oxygen delivery to deep tumor and th...

Full description

Saved in:
Bibliographic Details
Main Authors: Wenqi Yu (Author), Ruyi Lin (Author), Xueqin He (Author), Xiaotong Yang (Author), Huilin Zhang (Author), Chuan Hu (Author), Rui Liu (Author), Yuan Huang (Author), Yi Qin (Author), Huile Gao (Author)
Format: Book
Published: Elsevier, 2021-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_6acda917ecbe40428fe0f5eb28f7f50c
042 |a dc 
100 1 0 |a Wenqi Yu  |e author 
700 1 0 |a Ruyi Lin  |e author 
700 1 0 |a Xueqin He  |e author 
700 1 0 |a Xiaotong Yang  |e author 
700 1 0 |a Huilin Zhang  |e author 
700 1 0 |a Chuan Hu  |e author 
700 1 0 |a Rui Liu  |e author 
700 1 0 |a Yuan Huang  |e author 
700 1 0 |a Yi Qin  |e author 
700 1 0 |a Huile Gao  |e author 
245 0 0 |a Self-propelled nanomotor reconstructs tumor microenvironment through synergistic hypoxia alleviation and glycolysis inhibition for promoted anti-metastasis 
260 |b Elsevier,   |c 2021-09-01T00:00:00Z. 
500 |a 2211-3835 
500 |a 10.1016/j.apsb.2021.04.006 
520 |a Solid tumors always exhibit local hypoxia, resulting in the high metastasis and inertness to chemotherapy. Reconstruction of hypoxic tumor microenvironment (TME) is considered a potential therapy compared to directly killing tumor cells. However, the insufficient oxygen delivery to deep tumor and the confronting "Warburg effect" compromise the efficacy of hypoxia alleviation. Herein, we construct a cascade enzyme-powered nanomotor (NM-si), which can simultaneously provide sufficient oxygen in deep tumor and inhibit the aerobic glycolysis to potentiate anti-metastasis in chemotherapy. Catalase (Cat) and glucose oxidase (GOx) are co-adsorbed on our previously reported CAuNCs@HA to form self-propelled nanomotor (NM), with hexokinase-2 (HK-2) siRNA further condensed (NM-si). The persistent production of oxygen bubbles from the cascade enzymatic reaction propels NM-si to move forward autonomously and in a controllable direction along H2O2 gradient towards deep tumor, with hypoxia successfully alleviated in the meantime. The autonomous movement also facilitates NM-si with lysosome escaping for efficient HK-2 knockdown to inhibit glycolysis. In vivo results demonstrated a promising anti-metastasis effect of commercially available albumin-bound paclitaxel (PTX@HSA) after pre-treated with NM-si for TME reconstruction. This cascade enzyme-powered nanomotor provides a potential prospect in reversing the hypoxic TME and metabolic pathway for reinforced anti-metastasis of chemotherapy. 
546 |a EN 
690 |a Nanomotor 
690 |a Microenvironment modulation 
690 |a Hypoxia 
690 |a Aerobic glycolysis 
690 |a Triple negative breast cancer 
690 |a Anti-metastasis 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Acta Pharmaceutica Sinica B, Vol 11, Iss 9, Pp 2924-2936 (2021) 
787 0 |n http://www.sciencedirect.com/science/article/pii/S2211383521001337 
787 0 |n https://doaj.org/toc/2211-3835 
856 4 1 |u https://doaj.org/article/6acda917ecbe40428fe0f5eb28f7f50c  |z Connect to this object online.