Multi-Task Heterogeneous Ensemble Learning-Based Cross-Subject EEG Classification Under Stroke Patients
Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer interfaces to offer real-life assistance to individuals facing movement challenges. However, the effectiveness of training with MI may vary dep...
Сохранить в:
Главные авторы: | Minji Lee (Автор), Hyeong-Yeong Park (Автор), Wanjoo Park (Автор), Keun-Tae Kim (Автор), Yun-Hee Kim (Автор), Ji-Hoon Jeong (Автор) |
---|---|
Формат: | |
Опубликовано: |
IEEE,
2024-01-01T00:00:00Z.
|
Предметы: | |
Online-ссылка: | Connect to this object online. |
Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Схожие документы
-
Ensemble Deep Neural Network for Automatic Classification of EEG Independent Components
по: Fabio Lopes, и др.
Опубликовано: (2022) -
A Multistage Heterogeneous Stacking Ensemble Model for Augmented Infant Cry Classification
по: Vinayak Ravi Joshi, и др.
Опубликовано: (2022) -
Multi-Task Collaborative Network: Bridge the Supervised and Self-Supervised Learning for EEG Classification in RSVP Tasks
по: Hongxin Li, и др.
Опубликовано: (2024) -
Multiscale Convolutional Transformer for EEG Classification of Mental Imagery in Different Modalities
по: Hyung-Ju Ahn, и др.
Опубликовано: (2023) -
Spatio-Temporal Explanation of 3D-EEGNet for Motor Imagery EEG Classification Using Permutation and Saliency
по: Donghyun Park, и др.
Опубликовано: (2023)