Source-Free Domain Adaptation (SFDA) for Privacy-Preserving Seizure Subtype Classification
Electroencephalogram (EEG) based seizure subtype classification is very important in clinical diagnostics. Source-free domain adaptation (SFDA) uses a pre-trained source model, instead of the source data, for privacy-preserving transfer learning. SFDA is useful in seizure subtype classification, whi...
Na minha lista:
Principais autores: | Changming Zhao (Autor), Ruimin Peng (Autor), Dongrui Wu (Autor) |
---|---|
Formato: | Livro |
Publicado em: |
IEEE,
2023-01-01T00:00:00Z.
|
Assuntos: | |
Acesso em linha: | Connect to this object online. |
Tags: |
Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
|
Registros relacionados
-
Multi-Branch Mutual-Distillation Transformer for EEG-Based Seizure Subtype Classification
por: Ruimin Peng, et al.
Publicado em: (2024) -
TIE-EEGNet: Temporal Information Enhanced EEGNet for Seizure Subtype Classification
por: Ruimin Peng, et al.
Publicado em: (2022) -
Mixture of Experts for EEG-Based Seizure Subtype Classification
por: Zhenbang Du, et al.
Publicado em: (2023) -
SFDA: Domain Adaptation With Source Subject Fusion Based on Multi-Source and Single-Target Fall Risk Assessment
por: Shibin Wu, et al.
Publicado em: (2023) -
Online Privacy-Preserving EEG Classification by Source-Free Transfer Learning
por: Hanrui Wu, et al.
Publicado em: (2024)